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We propose a class of penalized nonparametric maximum likelihood estimators (NPMLEs) for the species richness problem. We use a
penalty term on the likelihood because likelihood estimators that lack it have an extreme instability problem. The estimators are constructed
using a conditional likelihood that is simpler than the full likelihood. We show that the full-likelihood NPMLE solution given by Norris
and Pollock can be found (with great accuracy) by using an appropriate penalty term on the conditional likelihood, so it is an element of
our class of estimators. A simple and fast algorithm for the penalized NPMLE is developed; it can be used to greatly speed up computation
of the unconditional NPMLE. It can also be used to find profile mixture likelihoods. Based on our goal of attaining high stability while
retaining sensitivity, we propose an adaptive quadratic penalty function. A systematic simulation study, using a wide range of scenarios,
establishes the success of this method relative to its competitors. Finally, we discuss an application in the gene number estimation using
expressed sequence tag (EST) data from genomics.
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1. INTRODUCTION

A sample of individuals is collected from a population con-
sisting of N distinct species (or classes), and their species is
identified. If we suppose that N is unknown, then estimation
of N based on such a sample is often termed the “species prob-
lem” in statistics nomenclature. In this article we consider the
setting in which the sampling probabilities vary over species.

This article presents a penalized nonparametric maximum
likelihood estimator (NPMLE) of N with desirable properties
in bias, variability, and robustness. A penalized form is used to
account for an inherent instability in the likelihood. Although
the scope of the article is limited to the species problem, the pe-
nalized NPMLE and the computing algorithm developed here
can be easily extended to the capture-mark-recapture problem
as well as to other nonparametric mixture problems. The algo-
rithm can also be used to construct profile likelihoods.

The species problem has a wide variety of important ap-
plications covering multiple disciplines including ecology, lin-
guistics, and numismatics (see Bunge and Fitzpatrick 1993 for
an extensive review). Existing methods in this area can be
loosely classified into parametric or nonparametric, depending
on whether the species abundance pattern is modeled by a para-
metric form. We believe that the nonparametric approaches are
generally more desirable because they have competitive per-
formance while adding robustness. Popular nonparametric ap-
proaches under comparison with the proposed approach in this
article include the lower-bound estimator, N̂c0 , of Chao (1984);
two coverage coefficient of variation (CV)-based estimators,
N̂c1 and N̂c2 , of Chao and Lee (1992) (denoted by N̂2 and N̂3

in their article); the coverage-duplication based solution N̂c3 of
Chao and Bunge (2002), the jackknife solution, N̂J of Burnham
and Overton (1978, 1979), and the unconditional NPMLE solu-
tion, N̂UNP, of Norris and Pollock (1996, 1998).

Bunge and Fitzpatrick (1993, p. 364) commented that “there
is not as yet a globally preferable estimator.” Simulation stud-
ies that have appeared in the literature are generally not conclu-
sive. The weakness of the aforementioned approaches have also
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been recognized in the literature. As a lower-bound estimator,
N̂c0 is stable but usually biased downward. The coverage es-
timators N̂c1 , N̂c2 , and N̂c3 depend on the choice of a tuning
parameter τ , where one splits the sample into “rare” (observed
no more than τ times) and “abundant” (seen more than τ times)
groups. One then estimates N based on the rare species frequen-
cies (Chao, Ma, and Yang 1993; Chao, Huang, Chen, and Kuo
2000). However, it was noticed that N̂c1 , N̂c2 , and N̂c3 are all
sensitive to τ (Chao and Bunge 2002). As shown in our sim-
ulation study, a bad choice of τ can bias the estimate substan-
tially. The coverage-duplication estimator N̂c3 can fail due to a
negative estimate of the duplication fraction (Chao and Bunge
2002). The jackknife estimator N̂J is robust, but often has a
positive bias (Smith and van Belle 1984). The unconditional
NPMLE N̂UNP achieves remarkable insensitivity to τ but re-
quires extremely long computing times, especially when N is
large. We also demonstrate that it has an instability problem.

Two nonparametric likelihood approaches exist, the uncon-
ditional and conditional, as identified by Sanathanan (1972). In
this article we unify these approaches and extend them by con-
sidering the addition of a penalty term to the conditional like-
lihood. The unconditional NPMLE can then be obtained, to a
high degree of approximation, by maximizing the conditional
likelihood under an appropriate penalty. This device provides a
great reduction in computing time for the unconditional estima-
tor.

However, both the conditional and unconditional NPMLEs
have a severe instability problem. We show that by modify-
ing the penalty, one can stabilize the resulting estimators. We
discuss the statistical interpretation of the penalty in terms of
Bayesian estimation, and demonstrate that the addition of an
adaptive quadratic penalty term greatly improves the perfor-
mance of the conditional NPMLE over a wide range of sim-
ulation settings.

2. NONPARAMETRIC MAXIMUM LIKELIHOOD
ESTIMATOR SOLUTIONS

Let X = {X1, . . . ,XN} be the number of observed individuals
from each distinct species, where the unobserved (and therefore
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unknown) species have Xi = 0. If so, then nj = ∑N
i=1 I(Xi = j),

for j = 1, . . . becomes the number of those species that had j in-
dividuals in the sample. The variable n0 then represents the un-
known number of species that were present in the population
but never observed.

Assume that the Xi’s, for i = 1, . . . ,N, are iid observations
from f (x;M), where M represents a set of unknown parame-
ters (or an unknown mixing distribution in the nonparametric
mixture case). Let t = maxi(xi), and let D = n1 + · · · + nt be
the total of observed distinct species. As shown by Sanathanan
(1972), the likelihood function for this model can be factored
into two parts,

L(N,M;X) =
(

N
n1, . . . ,nt

) t∏

j=0

[ f ( j;M)]nj

∝
(

N
D

)

f (0;M)N−D[1 − f (0;M)]D

×
∏

j>0

[
f ( j;M)

1 − f (0;M)

]nj

≡ Lm(N,M) × Lc(M). (1)

Here the likelihood Lm(N,M) is from the binomial marginal
distribution of D, which depends on both N and M. The con-
ditional distribution of X given D generates Lc(M), which de-
pends on M alone.

Sanathanan (1972, 1977) discussed two likelihood-based es-
timation methods for this problem. The unconditional method
finds the pair (N̂, M̂) that maximize L(N,M;X) globally. In the
second method, one finds M̂ by first maximizing Lc(M), then
calculating the MLE of N from Lm(N,M) treating M = M̂. If
we define the odds parameter as

θ(M) = f (0;M)

1 − f (0;M)
, (2)

then, for a given θ , the conditional estimator N̂c equals 〈D(1 +
θ)〉 = 〈 D

1−f (0;M)
〉, where “〈a〉” means the largest integer no

greater than a (see also Lindsay and Roeder 1987). In other
words, we obtain the conditional MLE given f (0;M) by simply
rescaling D by the non-0 probability. [Because the penalized
approaches under consideration in this article all concern θ di-
rectly rather than f (0;M), we write the conditional estimator N̂c

in terms of θ in the following context.] Sanathanan (1972, 1977)
also estabilished that the unconditional and conditional MLEs
of N have the same asymptotic distribution when the regularity
conditions hold (e.g., in the Poisson–gamma model).

2.1 Poisson Mixture Model and Conditional NPMLE

We assume the model where f in (1) is a Q-mixture of
Poisson variables, that is,

f (x;Q) =
∫

e−λλx

x! dQ(λ),

where Q is an arbitrary unknown distribution on the parame-
ter space �. This arises from the following hierarchical model:
Suppose that the sampling count for species i is a Poisson ran-

dom variable with abundance parameter λi, and that the distri-
bution of the abundance parameters among the species is Q.
Mao and Lindsay (2003) identified that the conditional log-
likelihood in (1) can be reparameterized into a P-mixture of
0-truncated Poisson densities as

�c(P) =
t∑

j=1

nj log[g( j;P)], (3)

where g( j;P) = ∫ e−λλj

j!(1−e−λ)
dP(λ) and

dP(λ) = (1 − e−λ)dQ(λ)
∫
(1 − e−λ)dQ(λ)

. (4)

If � = (0,∞), then Q → P is a one-to-one transformation with

inverse dQ(λ) = (1−e−λ)−1 dP(λ)∫
(1−e−λ)−1 dP(λ)

.

However, if we were to include the boundary point 0 in �,
then the map is not invertible. This corresponds to the fact that
because n0 is not observed, any mass of Q placed at 0 is not
identifiable. It is natural to exclude 0 from �, because any
species with λ = 0 is not actually present and should not count
in N. (Looking ahead, we will show that the near nonidenti-
fiability of the mass in Q for λ near 0 still presents a severe
problem.)

In what follows, we reserve the notation Q for the mix-
ing distribution of the original Poisson mixture and P for its
0-truncated transformation. Due to the invertible relationship
between Q and P on (0,∞), for convenience we write �m and �c

in P or Q interchangeably, that is, �m(N,Q) ≡ �m(N,P) and
�c(Q) ≡ �c(P).

The advantage of the form (3) is that it is a standard non-
parametric mixture likelihood (Lindsay 1995) of iid observa-
tions from a P-mixture of 0-truncated Poisson variables. The
absence of the parameter N in �c(P) makes this a simpler op-
timization problem. One can first find P̂ from �c(P), a condi-
tional MLE. Notice that because θ(Q) from (2) has the form
θ(Q) = f (0;Q)

1−f (0;Q)
, we can write θ as a function of P in the sim-

ple linear form,

θ =
∫

(eλ − 1)−1 dP. (5)

We can then maximize the marginal likelihood with P fixed
at P̂ to obtain an N-estimator of the form 〈D(1 + θ(P̂))〉. We
call the resulting estimator the conditional NPMLE and denote
it by N̂CNP, although technically it is a two-step “conditional-
then-marginal” MLE.

The conditional NPMLE of N is simple to implement and
fast to compute. However, our numerical experience shows that
it has a severe instability problem related to the boundary of the
parameter space. In these cases, the conditional NPMLE of P̂
from (3) contains λ at or near 0 as a support point. In particular,
if one were to allow Q to have mass at λ = 0, then the NPMLE
would often put positive mass there. In such cases, if one re-
stricted the parameter space to � = (0,∞), then the maximum
over Q would not be attained (and an algorithm will keep try-
ing to put mass near 0), because the solution is on the excluded
boundary.

To solve this, we could try allowing λ = 0 to be a mass point
in the algorithm. But this creates two new problems. First, we
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cannot invert the Q to P map to find a unique Q̂, because the
mass at λ = 0 is not well defined. Second, this situation has a
severe impact on N estimation. Recall that the estimator of N
is 〈D(1 + θ(P̂))〉, and see that θ(P̂) goes to ∞ as any support
point in P̂ approaches 0; see (5). That is, if we allow mass at
λ = 0, then the estimator will be ∞, and if we allow mass ar-
bitrarily near 0, then N̂CNP will “blow up.” In practice, a tiny
λ component is frequently fit in P̂, which blows up N̂CNP.

2.2 A Special Challenge

This numerical instability is closely related to the results of
Mao and Lindsay (2002), who identified some challenging the-
oretical defects in the model. In particular, they showed that it
is theoretically impossible to create an upper confidence limit
for N that would hold a target confidence level across all possi-
ble abundance distributions Q (unless one uses the trivial value
of ∞ as the upper limit).

There is a simple logic behind the mathematics. Suppose that
there were M species with abundance λ = 0. Of course, they are
never seen, and so we could not hope to determine their num-
ber. Even though we have excluded λ = 0 from �, this does not
exclude the possibility that there are many species with van-
ishingly small λ, small enough that none of them would ever
appear in a reasonable sample. To put this in another way, there
is less and less statistical information about the distribution Q
as λ → 0, and it is these small λ’s that can have a large effect
on N estimation.

There exist a substantial number of nonparametric estimators
of N, and they are often accompanied by a method for con-
structing standard errors. How can this be if upper confidence
limits are impossible? It is because these estimators might bet-
ter be called proxy estimators, because they consistently esti-
mate proxy functionals of the model that equal N only for some
subset of all distributions Q. Outside this subset, the estimators
display nonvanishing bias at all sample sizes.

The ramifications of this can be seen in our simulations. For
many simulation settings, the 95% central portion of the estima-
tors’ sampling distributions will not even cover the true value
of N. On the other hand, the NPMLE has a sampling distri-
bution that typically covers the true value, but it does so by
frequently creating very large values due to its aforementioned
instability.

In the face of this, our goal in this research was to see whether
one could penalize the nonparametric likelihood in such a way
that the resulting NPMLE retained much of its flexibility rela-
tive to other methods, but also behaved more stably.

2.3 Penalized Likelihood

Let �(P) be a log-likelihood function, where in our case P is
an unknown probability measure. The penalized likelihood cor-
responding to penalty parameter γ and penalty function h(P) is
defined as

�γ (P) = �(P) − γ h(P). (6)

The penalized conditional likelihood corresponding to the con-
ditional likelihood �c in (3) is then

�γ
c (P) = �c(P) − γ h(P). (7)

The resulting penalized full log-likelihood is

�γ (P) = �m(N,P) + �γ
c (P).

We write h in terms of P rather than Q, because �c is more natu-
rally parameterized by P in the conditional likelihood form (3).

Remark 1. For γ > 0 and h(P) > 0, clearly a maximizer
of (7) tends to avoid P with large values of h(P). Note, how-
ever, that the form (7) also arises when one maximizes �c sub-
ject to the constraint h(P) = h0 using the method of Lagrange
multipliers, with the γ being the Lagrange parameter. For this
reason, our methods are also relevant for profile likelihood con-
struction.

To estimate N, we first find the penalized NPMLE of P, P̂γ ,
from �

γ
c (P), then define the penalized conditional NPMLE of N

to be

N̂γ = 〈
D(1 + θ(P̂γ ))

〉
. (8)

The penalized likelihood form in (7) provides rich possi-
bilities for controlling the behavior of estimators of N. How-
ever, one important issue in construction of the penalty is that
computing the NPMLE from �

γ
c (P) may not be trivial. It is

known that if the functional h(P) is linear [i.e., of the form
h(P) = ∫

h(λ)dP(λ)], then the NPMLE can be found using a
simple extension of standard NPMLE methods (Lindsay 1995).
For example, the odds parameter θ(P) would be such a linear
functional, with h(λ) = (eλ − 1)−1. In this article we consider
three choices of penalty function h(P) all involving the odds pa-
rameter θ . One of the innovations of this article is a fast exten-
sion of the standard computing algorithm to the situation where
the penalizing function is a differentiable function of a linear
functional like θ(P), thereby expanding our possibilities.

2.4 Unconditional NPMLE via Penalized Likelihood

The first choice of the penalizing function is

h1(P) = log

[
θ(P)

1 + θ(P)

]

.

Note that log[ θ(P)
1+θ(P)

] = log[ f (0,P)] ≤ 0. A larger f (0,P)

causes more penalty (or, strictly, less reward) if γ > 0 in (7).
We actually include this penalty because it can be used to gen-
erate a close approximant to the unconditional NPMLE. The
following proposition provides a way to simplify the uncondi-
tional solution.

Proposition 1. (a) Suppose that (N̂, Q̂) is the unconditional
MLE (parametric or nonparametric), and let θ̂ = θ(Q̂). Then
N̂ = 〈D(1 + θ̂ )〉 and �c(Q̂) = supQ{�c(Q) : θ(Q) = θ̂}.

(b) Consider the full log-likelihood function �(N,Q) =
�m(N,Q) + �c(Q) and the modified objective function

�∗(Q) = �m(N,Q)|N=〈D(1+θ(Q))〉 + �c(Q).

Then Q̂ is the unconditional MLE (parametric or nonparamet-
ric) from �(N,Q) if and only if Q̂ also maximizes �∗(Q).



Wang and Lindsay: Species Richness Estimation 945

(c) For each θ ≡ θ(Q) ∈ (0,∞),

�m(N,Q)|N=〈D(1+θ(Q))〉
= sup

N
(�m|θ)

≈ log

[
e−DDD

D!
]

− .5 log

[
θ

1 + θ

]

, (9)

where “≈” means that the difference of the two sides goes to 0
as D → ∞.

For the proof see Appendix A.

Remark 2. The approximation in part (c) of Proposition 1
corresponds to approximating the binomial marginal likelihood
with a Poisson likelihood modified by a θ function. As θ → ∞,
the modifier vanishes. The approximation error, defined as the
difference of the two sides of (9), decreases as D or θ increases.
For example, at D = 100, as θ varies from .2 to 4, the error
changes from 3.5E–3 to 4.2E–5. At D = 500, the error de-
creases from 6.9E–4 to 8.3E–6 as θ varies in the same range.

By part (a) of Proposition 1, the unconditional NPMLE, de-
noted by N̂UNP, is determined by Q̂. Moreover, an objective
function for finding Q̂ is given by the profile likelihood �∗ in
part (b) of Proposition 1. If we substitute the approximation in
part (c) into �∗(P), then we arrive at a penalized likelihood of
the form

�1 = �c(P) − γ1 log

[
θ

1 + θ

]

, γ1 = .5. (10)

The NPMLE Q̂ from �1 is therefore an approximation to the
unconditional NPMLE of Q. Due to the excellence of Stirling’s
approximation (see Remark 2), the resulting point estimator, de-
noted by N̂u, can be practically regarded as equivalent to N̂UNP
(as we demonstrate later).

From this result, we can directly derive a relationship be-
tween N̂u and N̂CNP based on the monotonicity property of the
penalized likelihood in Theorem 1, and extend it to a relation-
ship between exact unconditional and conditional MLEs in both
nonparametric and parametric situations in Corollary 1.

Theorem 1. Let P̂γ be the NPMLE for the penalized likeli-
hood form (6), where h(P) = h[θ(P)] is an increasing function
of θ . Let N̂γ be the corresponding N estimator based on (8). If
γ1 ≤ γ2, then θ(P̂γ1) ≥ θ(P̂γ2), which implies that N̂γ1 ≥ N̂γ2 .

For the proof see Appendix B.

Corollary 1. (a) N̂u ≤ N̂CNP.
(b) The unconditional MLE of N is always no greater than

the conditional MLE in both the parametric and nonparametric
cases.

For the proof see Appendix C.
The monotonicity stated in Theorem 1 explains how the vari-

ability can be controlled by penalty in the NPMLE solutions. In
particular, the exact unconditional MLE, whether parametric or
nonparametric, can be regarded as a penalized version of con-
ditional MLE and thus is always no greater than the latter. The
degree of shrinkage is jointly determined by the penalty and
penalizing function. For example, increasing the penalty para-
meter γ brings a more stable estimator, but at the possible cost
of negative bias due to overpenalization.

Our goal is to build a penalty that balances sensitivity and
stability. Note that log[ θ

1+θ
] = log[ f (0;Q)]; therefore, in �1 we

are actually penalizing the zero probability. Unfortunately, al-
though this penalty does improve stability over the conditional
method, it turns out to be inadequate to eliminate the bound-
ary problem (see an example in simulation section). Note that
log[ θ

1+θ
] increases in θ but becomes flat rapidly for θ > .5

[Fig. 1(b)]. This near-constancy implies that this penalty func-
tion becomes ignorable as θ grows large. As a result, it does
not guarantee the elimination of a boundary support point, and
so it retains the instability of the conditional NPMLE. For this
reason, we consider the following, more extreme penalties.

2.5 More Extreme Penalties

A natural choice for the penalty function is the odds func-
tional θ(P) itself. Recall that N̂ = 〈D + Dθ̂〉, so imposing a
penalty on θ reduces the magnitude of N̂. In fact, it is clear
that the penalized likelihood

�2(P) = �c(P) − γ2θ(P), γ2 > 0 (11)

cannot have its maximum at θ(P) = ∞, so extreme estimates
due to the boundary problem cannot occur. By Theorem 1, we
can tune the penalty term γ2 to control the variability of N̂.
Despite our initial optimism about �2(P), it was shown by sim-
ulation in Wang (2003) that the optimal choice of γ2 depends
strongly on the true value of θ . A larger true θ value requires
more bias correction, and vice versa.

This consideration led us to consider instead the following,
more severe penalty:

�3(P) = �c(P) − γ3(θ − µ)2I(θ > µ), γ3,µ > 0. (12)

Under the penalty function (θ − µ)2I(θ > µ) in (12), we pe-
nalize the quadratic distance between θ and µ when θ exceeds
threshold µ. This offers no penalty for small θ , but the penalty
becomes much larger than those in �1(P) and �2(P) as θ be-
comes large. This penalty function requires a choice of two pa-
rameters, γ3 and µ. If a chosen µ is too small, then the penalty
can be too strong, and the resulting penalized estimator of N can
be too conservative. But choosing µ too large can be ineffective
at variability control. The parameter γ3 affects the estimator in
the opposite way.

To avoid underpenalizing and overpenalizing, we used adap-
tive values for the penalty parameters. We let µ = N̂c0/D − 1
and γ3 = 1

2µ
, where N̂c0 is the lower-bound estimator of Chao

(1984). The resulting estimator is denoted by N̂WL. The logic
behind these choices is that the parameter µ, as defined based
on N̂c0 , is a lower-bound estimator of θ . The estimator N̂c0 is
very stable but usually negatively biased. In our experience,
θ̂CNP is never smaller than µ, so the penalty term always shrinks
the NPMLE toward N̂c0 . The term γ3 was chosen so that the
penalty term corresponds to a normal prior with variance µ (see
the next section for further discussion), which could be antici-
pated to bound the estimator above by µ plus about 3 σ = 3

√
µ.

Of course, this shrinkage of the NPMLE toward µ is likely
to cause bias for some P. However, in our experience the esti-
mation bias of the NPMLE estimators is less damaging to in-
ference than their excessive variability. In particular, we found
that this variability is reflected in sampling distributions for the
estimators that are right-skewed with a very long right tail (even
to ∞, due to the boundary problem).
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2.6 Interpreting the Penalties Using Bayes Risk

Our goal is to control the variability of NPMLE-based esti-
mators through penalizing the likelihood. A Bayesian interpre-
tation of the penalized log-likelihood function is that it equals
the logarithm of the posterior distribution, given that the penalty
term is the logarithm of the prior distribution on the latent distri-
bution P, and so penalized estimation corresponds to maximum
a posteriori estimation.

We can give an interpretation of this through Bayes risk. If
our goal were to improve the risk in estimating N at smaller
values of θ(P) (at the price of increased risk for larger values
of θ(P)), then we would use a Bayes prior that downweights
large θ(P). This seems to be a sensible strategy given that es-
timation is already quite bad when θ(P) is large (which corre-
sponds to many species of vanishingly small observability).

This leads us to interpret our penalties in terms of the prior in-
formation implicit in them. The implicit prior measures for the
odds functional θ(P) corresponding to the penalties in �1, �2,

and �3 are plotted in Figure 1 and denoted by

�1 : m1(θ) ∝
[

1 + 1

θ

].5

,

�2 : m2(θ) ∝ e−γ2θ , γ2 > 0,

and

�3 : m3(θ) ∝ e−γ3(θ−µ)2
I{θ > µ} + cI(θ ≤ µ),

µ,γ3 > 0, c > 0.

The density m1 is proportional to an approximation to the
profile marginal likelihood supN(Lm|θ) (Prop. 1). This is very
much an improper prior, because m1 is everywhere greater
than 1; it also does not integrate on intervals neighboring 0.
The prior m2 is an exponential distribution with mean 1/γ2.
The prior m3 is a hybrid of a uniform distribution on (0,µ) and
the right half of a normal distribution with mean µ and variance
σ 2 = 1

2γ3
on (µ,∞). From this, it is clear that very little mass

occurs to the right of µ + 3σ.

Figure 1. Priors and Corresponding Penalizing Functions for �1, �2 , and �3 .
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The foregoing three priors all shrink the N estimates in the
sense that the penalized NPMLE N̂�i ≤ N̂CNP (see Thm. 1). The
choice of γ (and µ in �3), however, directly determines the
shape of the posterior distribution of θ . If the true θ is large,
then we would like the prior to have larger mean value or to be
flatter, and vice versa. This suggests that if no strong prior infor-
mation is available, then we might wish to generate an adaptive
prior based on the sample itself.

The prior m3 is such a creation. Because N̂CNP rarely (if ever)
goes below the lower-bound estimator N̂c0 , the part of the prior
that affects the estimator is the right tail, the normal distribution
for θ with µ = N̂c0/D−1 and σ 2 = µ. This choice of σ 2 is nat-
ural, because larger values of µ imply more unsampled species
and thus more uncertainty.

Remark 3. As an alternative to construction a penalty via
prior specification, one can think of the additional likelihood
term as being the likelihood contribution from some additional
(and fictional) data. This can be helpful in construction and
interpretation, because then one can get some feeling of how
much prior information one is adding to the problem.

For example, suppose that in addition to the other data, one
had an independent observation x from a binomial distribution
with parameters m and p = 1 − f (0;Q) = 1/(1 + θ). This fic-
tional data would correspond to adding m additional species
to the population, with each species generated from the same
abundance distribution Q as the others, and finding that t were
observed and m − x were not. These data would have the log-
likelihood

x log
1

1 + θ
+ (m − x) log

θ

1 + θ
.

One could then interpret x/m as the estimated likelihood that
a randomly drawn species would be observed, and the parame-
ter m would represent the weight that one is giving these “prior
data.” If x > 0, then this augmentation term would become neg-
ative infinity as θ → ∞, and so the maximum of the penal-
ized likelihood could not occur there. For example, if we used
x = γ and m = γ, then the augmented likelihood term would
be −γ log(1 + θ), corresponding to the monotonic-increasing
penalty function h(P) = log(1 + θ). The penalized likelihood
�1 is another example where x is known as D and m is set ap-
proximately as 〈D(1 + θ)〉.
2.7 Optimization Results and an Algorithm

The theory of optimization for a standard mixture log-
likelihood such as �c(P) in (3), or the penalized modifications
such as found here, is based on principles of convex opti-
mization theory (Lindsay 1995). In such problems, there is
a natural extension of the likelihood equations used in ordi-
nary parametric likelihoods. Let �λ denote the degenerate dis-
tribution at λ. One starts with the gradient function D(P, λ),
defined as the derivative in ε of the objective function L(P)

(log-likelihood or the penalized version) along the path (1 −
ε)P + ε�λ, evaluated at ε = 0. We say that L(P) is maximized
locally at P̂ if and only if

D(P̂, λ) ≤ 0 for all λ ∈ �.

This condition is necessary and sufficient for P̂ to be a global
maximum if L(P) is a concave function of P.

This gradient criterion naturally leads to algorithms that can
be used to optimize L. We have developed an extension of
VDM/EM algorithm (Lindsay and Roeder 1992) to find the
NPMLE from �2 very reliably. Critical in its development is the
linearity in P of the penalty θ(P), because this enables one to
extend the EM algorithm to include the penalty term. For �1(P),
the penalty −γ1 log[ θ

1+θ
] is a convex function of the linear

functional θ(P), so the concavity of �1(P) need not hold, and
so we are not guaranteed a global solution at convergence. The
likelihood �3(P) is concave due to the concavity of the penalty
−γ3(θ − µ)2I(θ > µ); thus a global maximum is guaranteed.
However, linearity in P does not hold for either �1 or �3, and
we have found that direct maximization of �1 or �3 is difficult.
The following optimization theorem, however, can be used as
the basis for a novel strategy for finding the NPMLE in �1 or �3
by iteratively maximizing the same likelihood form as in �2.

Before giving our result, we offer some background on the
existence of NPMLEs for mixture likelihoods. In particular,
suppose that �(P) has the standard mixture likelihood form∑

nj log
∫

Lj(λ)dP(λ), where Lj(λ) is the mixture density at the
ith distinct value for i = 1, . . . ,n (truncated Poisson with mean
parameter λ in our case). Suppose that we are interested in the
penalized likelihood �(P)− γ h(P), where h(P) = ∫

h(λ)dP(λ)

is a linear function of P. Then, according to Lindsay (1995,
p. 142), there exists an NPMLE provided that the extended like-
lihood curve {(L1(λ), . . . ,Ln(λ),h(λ)) :λ ∈ �} is a closed and
bounded set.

In cases like ours, boundedness in Lj is automatic because
we have discrete densities, so each likelihood component is
bounded by 1. The closed condition is a little more difficult, be-
cause this requires that we include the limit point λ = 0 of the
parameter space. Indeed, this is the source of the NPMLE in-
stability. However, once we move to a penalized likelihood op-
timization problem, this is not a problem, as long as the penalty
function becomes infinite for P containing such limit points.
Therefore, even if we include these points to ensure the closed-
ness of the image set, we know that they cannot be used in the
solution.

But Lindsay’s results do not cover nonlinear penalties, so we
must extend the relevant existence results for penalized mixture
likelihoods.

Theorem 2. Consider a penalized mixture likelihood of the
form �(P) − γ h[θ(P)], where �(P) is a standard mixture like-
lihood, where θ(P) = ∫

θ(λ)dP(λ) is a linear functional of P,
and where h(θ) is a differentiable function of θ . Suppose also
that the image set of the function (L1(λ), . . . ,Ln(λ), θ(λ)) is
closed and bounded. Then the following apply:

(a) There exists a distribution P̂ω that maximizes �ω(P) =
�(P) − ωθ(P).

(b) A necessary and sufficient condition for �(P) −
γ h[θ(P)] to be locally maximized at P̂ (in the sense of sat-
isfying the gradient requirement) is that P̂ is also the global
maximizer of �ω(P) when ω is set equal to the constant
γ h′[θ(P̂)]; that is, each solution to the h penalty problem can
be found as a solution to the linear problem by using an appro-
priate penalty weight.

(c) If h(θ) is convex in θ , then any local maxima to the pe-
nalized likelihood is the global maximum.
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For the proof see Appendix D.
Applying Theorem 2 to our particular penalized likelihoods

gives the following result.

Corollary 2. (a) If there exists P̂ that globally maximizes �1
such that θ(P̂1) < ∞, then P̂1 must be the unique global maxi-
mum to �2 under the penalty γ2 = γ1 ∗h′

1(θ̂ ) = γ1
1

θ̂ (1+θ̂ )
, where

θ̂ = θ(P̂1).
(b) There is a unique mixing distribution P̂3 that globally

maximizes �3. Let P̂CNP be the conditional NPMLE without
penalty. If θ(P̂CNP) ≤ µ, then P̂CNP is the unique global maxi-
mizer of �3. Otherwise, P̂3 is the maximizer of �3 if and only if
P̂3 maximizes �2 at γ2 = γ3h′

3[θ(P̂3)] = 2γ3[θ(P̂3) − µ].
For the proof see Appendix E.

Remark 4. For �1, the penalty term h1 is unbounded below
as θ → 0 (and hence −γ1h1 can go to ∞). However, in our ex-
perience this does not present a practical problem with finding
a solution. Forcing θ toward 0 can be done only by letting the
λ supports of P become infinite; but then the rest of the log-
likelihood goes to minus infinity at a faster rate.

Remark 5. For the penalized likelihood with linear or con-
vex penalty in the truncated Poisson case, the global NPMLE
solution exists and is unique. See a proof in Appendix D for the
uniqueness.

Geometrically, the idea of the algorithm is exceedingly sim-
ple. One finds the NPMLE for the likelihood �2 iteratively, with
γ2 updated in each iteration as the product of γ1 (or γ3 for �3)
times the derivative of h1(θ) [or h3(θ) for �3], evaluated at θ(P̂)

from the last iteration.
In the �1 case, the algorithm comprises the following steps:

1. Initialize θ(0) = (N̂c0 − D)/D, and find P̂(1) =
argP sup{�2|γ2=γ1h′

1(θ
(0))}.

2. At the tth iteration, let θ(t−1) = θ [P̂(t−1)], and find P̂(t) =
argP sup{�2|γ2=γ1h′

1(θ
(t−1))}.

3. Repeat step 2 until |θ(t) − θ(t−1)| < tol.

We used tol = 1/D, because N̂ = 〈D + Dθ̂〉, and so the
N-estimate is changing by less than one unit per step. Despite
the fact that part (a) of Corollary 2 guarantees only a local
condition in �1, we have never encountered multiple solutions
in our simulation study and real data analysis. Our examina-
tion of the profile likelihood of θ(P), which can be constructed
from �2, suggests that it is almost always unimodal, which con-
firms similar findings by Norris and Pollock (1998).

To maximize �3, we followed this procedure: (1) obtain
P̂CNP; and (2) if θ(P̂CNP) ≤ N̂c0 , then the algorithm stops. In our
experience, θ(P̂CNP) smaller than N̂c0 was never found, which
is a lower-bound estimator. Otherwise, we need only replace
γ1h′

1(θ) by γ3h′
3(θ) in the foregoing algorithm. A unique global

maximizer is guaranteed by Theorem 2.

3. CONFIDENCE INFERENCE

As we have noted, in a nonparametric inference it might be
most honest to think of determining lower confidence limits
for N and using ∞ as the upper bound. However, in a practi-
cal sense we might wish to have an a finite upper bound that

reflects some reasonable optimism about the underlying abun-
dance distribution Q having not too much mass at very small λ.

This thinking is implicit in the finite confidence limits that have
been given for the coverage and jackknife estimators.

For our nonparametric likelihood methods, we cannot appeal
to the asymptotic results of Sanathanan (1977), because they
were for finite-dimensional parametric models. We have there-
fore investigated bootstrap approaches for confidence interval
construction.

In a Poisson-based bootstrap, we would plug our fitted para-
meter values N̂ and Q̂ into our Poisson mixture model and use
it to simulate N̂ new X values. The values of Xi = 0 would be
truncated away, giving us a new dataset. However, this seems
a bit artificial, because in typical species datasets it is individ-
uals that are sampled from the population, and then the species
count comes from aggregating individuals.

This suggests an alternative multinomial-based bootstrap;
that is, we create an estimated population, then simulate draws
of individuals from it. We propose doing this as follows. Sup-
pose that N̂ is the point estimate of N and that the support points
of Q̂ are (λ̂1, λ̂2, . . . , λ̂k) with weights (π̂1, π̂2, . . . , π̂k). We cre-
ate a multinomial sampling model by creating N̂ cells, with
each cell corresponding to a species. We divide the cells into
k groups, with each cell group corresponding to species from a
particular abundance level λ̂j, j = 1, . . . , k. The number of cells
in the groups are N̂π̂1, N̂π̂2, . . . , N̂π̂k. The multinomial para-
meter for each cell in the jth group is then equal to

pj = λ̂j

N̂
∑

i λ̂iπ̂i

for i = 1, . . . , k.
Bootstrap samples of fixed size S are then generated by re-

peatedly drawing individuals from this multinomial population.
For every bootstrap sample, the penalized NPMLE of N is com-
puted. A confidence interval is then constructed using Efron’s
percentile method (Efron 1981). Note that in this sampling the
sample size S is fixed; in Poisson sampling it would be random.
This scheme therefore better matches data that were collected
by sampling a fixed number of individuals rather than using
Poisson sampling.

We note that we are able to do this semiparametric bootstrap
because we have fit a model to the full sampling mechanism,
not just developed an estimator for N. We illustrate this method
in Section 5 and briefly compare it with other bootstrap ap-
proaches in Section 6.

4. REAL DATA ANALYSIS AND SIMULATION STUDY

In this section we investigate the behavior of the two pe-
nalized NPMLE estimators, N̂u from �1 and N̂WL from �3 un-
der the adaptive penalizing function using µ = N̂c0/D − 1, and
compare them with the lower-bound estimator N̂c0

(Chao 1984), two coverage-based estimators N̂c1 and N̂c2 (Chao
and Lee 1992), the coverage-duplication estimator N̂c3 (Chao
and Bunge 2002), the jackknife estimator N̂J (Burnham and
Overton 1979), and the unconditional NPMLE N̂UNP (Norris
and Pollock 1998).

Our primary goal is to find which estimators are the most
widely reliable for inference in this difficult model. We start
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with a case study demonstrating that some of the estimators are
quite sensitive to the choice of τ and others are not. This infor-
mation then provides some guidance for the selection of τ in
our second study, in which we compare the estimators in simu-
lations from a wide range of models. From this study, we draw
conclusions about which methods are most reliable.

4.1 Real Data 1: Fisher’s Butterfly Data

We first investigate the choice of τ . In the process, we also
illustrate the relationship between N̂u and N̂UNP. The famous
Malayan butterfly data in Table 1 was originally published by
Fisher, Corbet, and Williams (1943) and was recently analyzed
by Chao and Bunge (2002). As suggested by Chao et al. (1993)
and Chao et al. (2000), we split the sample into “rare” (n1–nτ )
and “abundant” (beyond nτ ) species. In practice, one can first
obtain an estimate, N̂τ , based completely on the “rare” species
data, then calculate the final estimate by N̂ = N̂τ + ∑t

j=τ+1 nj.
In the following analyses, the estimates are obtained in this way
if τ is specified. Table 2 presents the results from various esti-
mators.

For the unpenalized conditional NPMLE solution, the bound-
ary problem (i.e., P̂ contains a 0 or tiny component) occurred
at τ = 10,11,12,13,14,20,24, and, consequently, N̂CNP gave
extremely large numbers at these τ ’s (not reported here). As a
remedial measure, we fitted a model with one less component in
this situation, which often shifts the smallest components right-
ward and yields more conservative (smaller) estimates. Here
we denote the modified version as N̂mCNP. By Corollary 1,
N̂CNP must be no less than N̂u, N̂UNP, and N̂WL. Even after mod-
ification, N̂mCNP still ended up greater than N̂u or N̂UNP, except
for τ = 11.

We found that the approximation of N̂u to N̂UNP is very sat-
isfactory with a great saving of computing time. As predicted
earlier, N̂u is identical to N̂UNP for all τ ’s except for τ = 12,
where it differs by 1 (723 vs. 722). Chao and Bunge (2002) re-
ported that the approach of Norris and Pollock (1998) took up
to an hour for a single point estimate, whereas with our codes
written in JAVA, on average it took a few seconds to finish com-
puting such that |θ(t) − θ(t−1)| < 1/Dτ , where Dτ = ∑τ

j=1 nj.
As for N̂WL, the penalty appears to be an effective way to

solve the boundary problem and stabilize the estimator. The es-
timates at different τ ’s are fairly consistent except for τ = 11,
where the estimate was pulled up to 739. This is probably re-
lated to the failure of N̂CNP at τ = 11 due to the boundary
problem. In contrast, N̂mCNP gave 711 at τ = 11, tending to
be relatively conservative, even smaller than the lower-bound
estimator, N̂c0 = 714.

Relative insensitivity to the cutoff τ is a feature of all of the
NPMLE-based estimators listed in Table 2. This allows one to
use the relatively “rare” species to obtain estimates without con-
cern about the choice of τ . In contrast, the coverage-based es-
timators N̂c1 , N̂c2 , and N̂c3 all increased systematically with τ ,
and so its choice plays an important role in estimation proper-
ties. The estimator of N can change dramatically in τ , as we
show in the genomic example of next section.

Table 2. Comparing Estimates for Fisher’s Malayan Butterfly Data
(Fisher et al. 1943)

τ N̂mCNP N̂u N̂UNP N̂WL N̂c1 N̂c2 N̂c3

10 716 715 715 716 712 737 757
11 711 715 715 739 714 740 761
12 729 723 722 730 716 744 765
13 731 724 724 728 717 746 768
14 726 723 723 724 719 750 774
15 724 722 722 724 721 753 777
20 721 718 718 725 723 772 802
24 721 719 719 722 737 779 810

NOTE: τ is the cutoff defining “rare” and “abundant” species. N̂mCNP is the modified conditional
NPMLE estimator without penalty. N̂u is the approximatant to N̂UNP from �2 at γ2 = .5. N̂UNP , N̂c1,
N̂c2 , and N̂c3 were reported by Chao and Bunge (2002, table 2, p. 535). N̂WL is the penalized
NPMLE estimator from �3 under the adaptive quadratic penalizing function.

4.2 Simulation Study

Under the Poisson mixture model, we assume that the mean
parameter � of each Poisson observation is generated from a
latent distribution Q(λ). In the simulation, we can first generate
λ1, λ2, . . . , λN from Q(λ), then generate corresponding Poisson
observations using these λ’s as the mean parameter values. To
compare the performance of these estimators, we construct a
factorial design concerning three factors that characterize Q,
namely sampling depth (d), coefficient of variation (CV), and
skewness (ρ). The first factor, sampling depth, is defined as the
probability of capturing a randomly selected species, that is,
d = 1 − f (0;Q) = 1

1+θ(Q)
. This factor measures the sampling

intensity relative to the total species number N. The CV factor,

introduced by Chao and Lee (1992), defined as CV =
√

var(λ)
E(λ)

,
accounts for the heterogeneity in the species abundance distrib-

ution. Skewness, defined as ρ = E(λ−E(λ))3

[E(λ−E(λ))2]3/2 , is another factor
that affects the performance of an estimator (Haas and Stokes
1998) but has not attracted much attention in the literature. Be-
cause the species data usually is right-skewed, we only simulate
data with positive skewness. The goal of the following simula-
tions is to compare the relative performance of these estimators
with respect to coverage, bias, variability, and robustness in dif-
ferent situations.

Simulation Design I. We first simulated data from a pop-
ulation with N = 1,000 and Q = gamma(α,β) according to a
two-way factorial design in Table 3. Because a gamma dis-
tribution has two parameters, only the first two factors, sam-
pling depth and CV , were controlled for in this design. Note
that in the Poisson–gamma model, d = 1 − βα

(1+β)α
, CV =√

var(�)/E(�) = 1/
√

α, and ρ = 2/
√

α. The scale parame-
ter β is not involved in CV or ρ. The α and β values cor-
responding to each crossover of d ∈ {.2, .3, .4, .5, .7, .9} by
CV ∈ {1.41,1.00, .71, .50} are tabulated in Table 3. The ex-
pected number of sampled individuals E(S) = E(

∑N
i=1 Xi) at

each situation is also calculated in Table 3, to indicate how the
actual sampling effort varies with heterogeneity at each targeted
sampling depth d.

Table 1. Malayan Butterfly Data of Fisher et al. (1943)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 >24 D

118 74 44 24 29 22 20 19 20 15 12 14 6 12 6 9 9 6 10 10 11 5 3 3 119 620
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Table 3. Design of Simulation I

d = .2 d = .3 d = .4 d = .5 d = .75 d = .9
(θ = 4) (θ = 3.3) (θ = 1.5) (θ = 1) (θ = .33) (θ = .11)

α, CV β E(S) β E(S) β E(S) β E(S) β E(S) β E(S)

α = 4 (CV = .50) 17.43 229 10.72 373 7.34 545 5.29 756 2.41 1,660 1.28 3,125
α = 2 (CV = .71) 8.47 236 5.12 391 3.44 581 2.41 830 1 2,000 .46 4,348
α = 1 (CV = 1.00) 4 250 2.33 429 1.5 667 1 1,000 .33 3,030 .11 9,091
α = 1/2 (CV = 1.41) 1.78 281 .96 521 .56 893 .33 1,515 .067 7,463 .01 50,000

Simulation Design II. To investigate how the skewness ρ

affects estimation, we consider the simplest case, a two-point
mixture, that is, Q = π�λ1 + (1 − π)�λ2 . Even in this sim-
ple model, however, it is still difficult to obtain the exact Q
determined by the specified values of CV,d, and ρ, because
three nonlinear equations must be solved simultaneously. We
thus obtained an approximate Q by evaluating these parame-
ters on a three-way grid of λ1 × λ2 × π for each crossing of
CV × d × ρ = {1,1.5} × {.3, .5, .75} × {1.5,2.5,4.69}. Table 4
presents the three-way factorial design with both the targeted
and actual obtained values of CV,d, and ρ.

For every simulation setting, we generated 200 datasets, us-
ing the cutoff τ = 10 for N̂u, N̂WL, N̂c1, and N̂c2 . We excluded
the estimator N̂c3 from this study for two reasons. First, it could
fail due to a negative or wildly large estimate of coverage-
duplication coefficient when d is small. For example, in Sim-
ulation I we observed 31 cases out of 200 that had negative
estimates at α = .5 and d = .2, and 4 out of 200 cases that had
negative estimates at α = .5 and d = .3. Second, the estima-
tor N̂c3 was built on the Poisson–gamma assumption. In Sim-
ulation II, where the true mixing distribution was discrete, we
found that this estimator behaved wildly bad (results not shown
here) even when d is relatively large.

We determined the order of the jackknife estimator N̂J by the
sequential testing procedure of Burnham and Overton (1978).
If the determined order exceeded 5 (which frequently oc-
curred), then the fifth-order estimate was taken to avoid out-
liers. For N̂u, extreme values were often observed, especially
when the true θ was relatively large (e.g., θ > .33 correspond-
ing to d < .75). If θ̂ kept increasing and exceeded 5 during
the iterations, then we terminated the algorithm and reported

the estimate based on current θ̂ . Otherwise, the variability
of N̂u could have been even larger than that reported here.
(The same problem and a similar remedial measure were also
reported in Norris and Pollock 1998.)

The summary statistics of the sampling distributions of these
estimators based on 200 Monte Carlo samples are presented in
Tables 7 and 8 for Simulation I and in Table 9 for Simulation II.
These statistics include sample mean ( ¯̂N), median (M̂), standard
deviation (s), root mean squared error (RMSE), mean absolute
error (MAE), and central 95% interval of the sampling distribu-
tion. One sign of the difficulty of this estimation problem is that
in many cases this central interval of the sampling distribution
did not cover the true value of N used in the simulation. The
only estimator to do this reliably, N̂u, did so because of its wide
variability.

In general, the nonparametric estimators all improved as the
sampling depth d increased. This is not a surprise, because a
larger d implies that more information about Q is present in
the data and there are fewer unseen species to estimate. In
the Poisson–gamma model, when d was fixed, bias increased
with CV , whereas variation remained relatively stable. On the
other hand, when CV was fixed, both bias and variation de-
creased as d increased, but the bias decreased at a much faster
pace and overwhelmingly determined the behavior of these es-
timators except for N̂u, where variability, not bias, was more
important.

For the discrete Q case, the results in Table 9 show consid-
erable complication in how the three factors impacted these es-
timators. With control of skewness ρ and sampling depth d, it
appears that both N̂c1 and N̂c2 behaved worse for larger CV ,

Table 4. Design of Simulation II

ad ≈ .3 d ≈ .5 d ≈ .75
aρ ≈ 1.5 ρ ≈ 2.5 ρ ≈ 4.69 ρ ≈ 1.5 ρ = 2.5 ρ = 4.69 ρ = 1.5 ρ = 2.5 ρ = 4.69

aCV ≈ 1 cλ1 .2 .3 .3 .5 .6 .6 1.2 1.3 1.3
cλ2 1.3 1.8 2.2 3.0 3.6 4.4 6.7 7.7 10
cπ .8 .89 .96 .8 .89 .96 .8 .89 .96
bd .29 .32 .28 .5 .51 .47 .76 .76 .74

bCV 1.05 1.01 .99 1 1 .99 .96 1 1
bρ 1.5 2.49 4.69 1.5 2.49 4.69 1.5 2.49 4.69

CV ≈ 1.5 λ1 .2 .2 .3 .5 .5 .6 1.2 1.3 1.3
λ2 3.1 2.2 3.5 7.9 6.7 7.2 19.2 14.5 15.7
π .8 .89 .96 .8 .89 .96 .8 .89 .96
d .34 .26 .29 .51 .51 .47 .76 .76 .74

CV 1.49 1.49 1.5 1.5 1.5 1.5 1.5 1.5 1.5
ρ 1.5 2.49 4.69 1.5 2.49 4.69 1.5 2.49 4.69

aThe targeted values of CV ,d, and ρ.
bThe actual values of CV ,d, and ρ used in the simulation.
cThe parameters in Q, that is, Q = π�λ1 + (1 − π )�λ2 .
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Table 5. An Example

j 1 2 3 4 5 6 7 8
nj 196 83 59 30 18 2 7 7

whereas the other four estimators, N̂u, N̂WL, N̂c0 , and N̂J , often
showed opposite behavior. When d and CV were controlled,
larger skewness pushed more mass onto the smallest compo-
nent. At ρ = 4.69, when the mixing distribution was close to
being degenerate at the smallest component, N̂c1 , N̂c2 , and N̂J

all produced wildly positive bias, whereas N̂u, N̂WL, and N̂c0

were much less vulnerable to this change.
To compare the relative performance of these estimators, we

ranked the six estimators in terms of MAE, median bias, and
coverage in Table 10 for Simulation I and Table 11 for Simu-
lation II. We used the median here because the sampling distri-
butions of N̂c0 , N̂u, N̂WL, and N̂J are all skewed strongly to the
right. For the MAE or median-bias criterion, a “+” sign indi-
cates that the estimator was one of the best two among the six,
whereas a “−” indicates the worst two. In the “95% coverage
column,” a “+” indicates that the central 95% sampling interval
covered the true N = 1,000, and “−” indicates that it did not.

One obvious conclusion is that there is no uniform win-
ner over all criteria and all models, and so an overall conclu-
sion requires setting some priorities. Here is how we set ours.
The goal is to find estimators that would work most reliably
across the widest range of situations. Due to the severe bias–
variance trade-off in this model, we believe that statistical reli-
ability is best measured by the estimator’s rate of success using
the 95% coverage criterion. Our reasoning is that: if this prop-
erty fails, then it is clear that “point estimator plus/minus two
standard errors” gives a wildly misleading sense of confidence
about the location of the true value of N.

This leads us to the conclusion that the jackknife estimator
worked well in Simulation I but not in Simulation II, and the
coverage estimator N̂c0 worked well in Simulation II but not
in Simulation I. We conclude that only N̂WL and N̂u succeeded
well in both simulations.

Comparing N̂WL and N̂u, we see that the penalized estima-
tor did succeed in reducing the MAE of the former, although
N̂u had better bias properties. We note, however, that in our im-
plementation of N̂u we prevented extreme large values by ter-
minating the algorithm if θ̂ kept increasing and exceeded 5 in
our simulations, so in all honesty, our version was actually a pe-
nalized estimator. Otherwise, its MAE would have been a very
large number. In our judgment, then, N̂WL is the overall winner.

Our foregoing conclusion is further supported by the rank-
ings under the MAE or RMSE criterion. We note that N̂WL,
N̂J , and N̂c2 all performed competitively well under the MAE
criterion in Simulation I (Table 10). However, as N̂WL contin-
ued to be a winner in Simulation II (Table 11), N̂c2 and N̂J be-
came the two least recommendable among the six estimators.
These results suggest that N̂WL tends to be more robust than
those other two estimators.

To illustrate the instability of the unconditional NPMLE, Ta-
ble 5 presents an example that was simulated from the Poisson–
gamma model at α = .5 and β = .56. The estimate from N̂u

was 2,417, corresponding to θ̂ = 5.01. (If we had not set the
upper limit on θ , then N̂u would have been 2,706.) The true
value of θ was 1.5. We can compare this with N̂UNP by com-
puting the profile (maximized over Q for fixed N) of the full
likelihood. The results are presented in Table 6 (where the like-
lihood values have a common constant removed).

Table 6 suggests that the likelihood is unimodal, with
the true unconditional NPMLE N̂UNP somewhere between
2,700 and 2,730. However, it is extremely flat, with the like-
lihood at the true N of 1,000 being nearly the same as the likeli-
hood at 3,000. In such flat cases, the penalty has a major impact,
and, correspondingly, the estimate from N̂WL was 847.

5. REAL DATA 2: EXPRESSED SEQUENCE TAG DATA

Our research on this topic was motivated by an application in
genomics. An expressed sequence tag (EST) is a fragment of a
gene sequence that can be considered a label of the correspond-
ing gene in the expressed form of mRNA transcript (Adams
et al. 1991). An EST dataset constitutes a random sample from
a population, the mRNA transcript pool containing a finite but
unknown number, N, of genes. The sampled ESTs can be clas-
sified by genes of origin, where here “gene” plays the role of
“species.” We wish to estimate the number of genes represented
in the mRNA transcript pool. The sequence data can be sum-
marized as the frequency, nj (Table 12), where nj represents the
number of genes with j ESTs existing in the sample. We next
use an EST dataset to demonstrate how various methods behave
in a real problem with very large counts. We also examine the
role of τ and the sampling behavior of the estimators in this
important biological problem.

The Arabidopsis thaliana root EST data was obtained from
the NCBI dbEST at http://www.ncbi.nih.gov/dbEST (Asamizu,
Nakamura, Sato, and Tabata 2000). (Interested readers can find
more relevant results in Wang, Lindsay, Leebens-Mack, Cui,
Wall, Webb, and de Pamphilis 2004.) The 6,043 total EST tags
were classified into 3,126 distinct genes. The most abundant
gene had 49 ESTs; in contrast, 2,187 of the 3,126 genes sam-
pled had only one EST (Table 12).

Table 13 compares N̂u and N̂WL with N̂c1 and N̂c2 at differ-
ent τ ’s. The two NPMLE estimators N̂u and N̂WL suggest, con-
sistently at different τ ’s, that about 9,000 genes are expressed
in the root tissue of Arabidopsis thaliana. In contrast, N̂c2 is
doubled as τ changes from 10 to 24, whereas N̂c1 increases
by 3,574. Clearly, N̂c2 is not recommended due to instability in
the highly skewed scenario. For comparison, the jackknife esti-
mator N̂J and lower-bound estimator N̂c0 give 9,923 and 8,006.

To assess the accuracy and variability of the estimators in this
setting, we used the bootstrap simulation method of Section 3.
We generated 200 bootstrap samples based on our estimated

Table 6. Profile Nonparametric Likelihood for the Data in Table 5

n 1,000 1,500 2,000 2,500 2,700 2,720 2,730 3,000
log L(N, Q̂N ) −.33 −.22 −.21 −.20239 −.202234 −.2022336 −.2022342 −.2024

http://www.ncbi.nih.gov/dbEST
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Table 10. Summary of Relative Performance of Estimators in Simulation I

MAEa Median-biasb 95% coveragec

d CV (α,β) N̂WL N̂u N̂c0 N̂c1 N̂c2 N̂J N̂WL N̂u N̂c0 N̂c1 N̂c2 N̂J N̂WL N̂u N̂c0 N̂c1 N̂c2 N̂J

.2 .5 (4, 17.43) + − + − − − + + + + + + + −
.71 (2, 8.47) + − + − + + − − + + + + + −

1 (1, 4) + − − + + + − − − + − − − −
1.41 (.5, 1.78) + − − + + − − + − + − − − −

.3 .5 (4, 10.72) − − + + + − − + + + + + + +
.71 (2, 5.12) + − − + + − − + + + − − + +

1 (1, 2.33) − − + + + − − + − + − − − +
1.41 (.5, .96) − − + + − − + + − + − − − −

.4 .5 (4, 7.43) − + + − + + − − + + + + + +
.71 (2, 3.44) + − − + + − − + + + − − + +

1 (1, 1.5) + − − + + − − + − + + − − +
1.41 (.5, .56) − − + + − − + + − + − − − +

.5 .5 (4, 5.29) − + + − + + − − + + + + + +
.71 (2, 2.41) + − − + + − − + + + − − + +

1 (1, 1) − − + + − − + + + + − − − +
1.41 (.5, .33) + − − + + − − + + + − − − +

.75 .5 (4, 2.41) − + + − + + − − + + + + + −
.71 (2, 1) − − + + + + − − + + − − + +

1 (1, .33) + − − + + − − + + + − − − +
1.41 (.5, .067) + − − + + − − + + + − − − +

.9 .5 (4, 1.28) − + + + − + + − − + + + + + −
.71 (2, .46) + + − + − + + − − + + − − − +

1 (1, .11) + − − + + − − + + + − − − +
1.41 (.5, .01) + − − + + − − + + + − − − +

aMAE: “+” means that the estimator is the best two with smallest mean absolute error and “−” means the worst two.
bMedian-Bias: “+” means that the estimator is the best two with smallest median-bias and “−” means the worst two.
c95% coverage: “+” means the central 95% percentile interval covers N = 1,000, and “−” means that it does not.

distribution

Q̂ = .941�λ=.37 + .052�λ=3.51 + .007�λ=9.99

and N̂WL = 8,919, the estimates obtained at τ = 15. The results
from N̂WL, N̂u, N̂c0 N̂c1 , and N̂c2 are presented in Table 14. The
sampling distribution of these estimators closely confirms the
original point estimates from Table 13. For example, the median

of N̂WL was 9,158, biased upward by about 239 from the true
value 8,919 used in the simulation. The unconditional NPMLE
approximant N̂u had an upward median bias of 435, but was
much more variable than N̂WL. The other estimators, N̂c0 , N̂c1 ,
N̂c2 , and N̂J , were all more simulation-biased than N̂WL, with
their central 95% intervals not covering N̂WL = 8,919, the true
N of the simulation. The estimate N̂c3 failed due to a negative

Table 11. Summary of Relative Performance of Estimators in Simulation II

MAE Median-bias 95% coverage

d CV ρ N̂WL N̂u N̂c0 N̂c1 N̂c2 N̂J N̂WL N̂u N̂c0 N̂c1 N̂c2 N̂J N̂WL N̂u N̂c0 N̂c1 N̂c2 N̂J

.3 1 1.5 + − − + + − − + + + − − − +
2.5 + − − − + + − − + + + + + +
4.7 − + − + + − − + + + + + + +

1.5 1.5 + − − + + − − + + + − − − +
2.5 + − − + + − − + + + + + − −
4.7 − + − + + − − + + + + + − −

.5 1 1.5 + − + − + + − − + + − − + +
2.5 + + − − + + − − + + + + − −
4.7 + + − − + + − − + + + − − −

1.5 1.5 + + − − + + − − + + + − + +
2.5 + + − − + + − − + + + + − −
4.7 + + − − + + − − + + + − − −

.75 1 1.5 + + − − + + − − + + + − − −
2.5 + + − − + + − − + + + − − −
4.7 + + − − + + − − + + + − − −

1.5 1.5 + + − − + + − − + + + − − −
2.5 + + − − + + − − + + + − − −
4.7 + + + − − + + − − + + + − − −

NOTE: Footnotes are the same as in Table 10.
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Table 12. Arabidopsis thaliana Root EST Data

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 23 24 25+ D
ni 2,187 490 133 121 37 51 22 19 7 8 6 7 6 4 5 5 1 4 2 2 2 1 6 3,126

estimate of the duplication factor and so was excluded from this
simulation.

6. DISCUSSION

6.1 Comparison of Methods

Accurate estimation of species richness N requires achiev-
ing a delicate balance between bias and variability. Each of the
methods that we considered had some scheme for tuning; the
tuning parameter τ used for N̂c1 and N̂c2 , the order used in
the jackknife estimator N̂J, and the penalizing functions (and
weights) in N̂WL and N̂u are all devices to this end.

Our simulation results revealed a few lessons about coverage
estimators. A good choice of τ is critical for the two cover-
age estimators because of their sensitivity to this number. For
the coverage methods, we note that there is a i2ni term in the
CV estimate. Therefore, including large i’s can result in great
variability of the CV estimate. Nonetheless, a good criterion
for choosing τ remains undeveloped. Moreover, the estimator
N̂c2 can improve estimation based on N̂c1 , but it can also be
wildly biased, as shown in Simulation II. A convincing rule for
choosing one estimator over the other has not been given.

As to the jackknife estimator, the selection of the order of
the estimator based on a sequential testing procedure for N̂J is
an attempt to balance bias and variability. Just the same, we
found that even when we use an upper bound on the order of 5,
overshooting still occurred frequently.

We have gained considerable understanding of the likeli-
hood-based estimators. The estimator N̂u was shown to be
practically equivalent to N̂UNP. We believe that a considerable
savings in computation makes it more useful in real data analy-
sis than the approach of Norris and Pollock (1998). However,
for either, instability and variability is a big concern, because
the penalizing function quickly becomes flat as θ increases. In
our analysis, the estimator N̂WL achieved similar freedom from
bias, in that its sampling distribution fell near the true values,
but with much lower variability due to its greater stability.

The robust accuracy of the sampling distribution is achieved
in two senses by the penalized NPMLE estimators, particu-
larly N̂WL. First, N̂WL exhibited better robustness to the form
of latent distribution Q than the coverage and jackknife ap-
proaches. For example, in Simulation II, high skewness and low
CV in a discrete Q resulted in large positive bias to N̂c1, N̂c2 ,

Table 13. Results for Root EST Data

τ N̂u N̂WL N̂c1 N̂c2

10 9,176 9,155 9,088 13,943
11 9,197 9,179 9,292 14,687
12 9,124 9,111 9,580 15,762
13 9,046 9,036 9,866 16,867
14 8,992 8,984 10,087 17,746
15 8,926 8,919 10,403 19,034
20 9,041 9,028 11,630 24,468
24 9,036 9,023 12,652 29,399

and N̂J , but not so much to N̂WL. This feature is highly desir-
able for an estimator in practice, because typically little prior
knowledge about Q is available, and the data themselves carry
little information.

A second remarkable feature of the NPMLE-based estima-
tors is their insensitivity to τ . Species data often have a long tail
but with majority data points concentrating on ni for small i’s,
which usually dominates the likelihood. As a result, the data
points at right tail can be informative for Q(λ) but are less in-
fluential in the estimation of f (0;Q) or θ(Q). For example, con-
sider fitting NPMLE to a right-skewed data. Large components
but with very small weights are usually fit due to these large
observations, while contributing little to f (0; Q̂). We can take
advantage of this insensitivity to fit NPMLE to relatively “rare”
species without introducing additional bias. Fitting NPMLE to
the “rare” species data often saves substantial computing time,
thereby enabling one to obtain point estimates and bootstrap
confidence intervals in an acceptable time interval. The average
computing time for the penalized NPMLE N̂u or N̂WL in the
simulation study was several seconds or less.

6.2 Other Possibilities

We did not include parametric approaches for comparison
in this article. However, a nested family of increasingly rich
mixture models could themselves be turned into a nonparamet-
ric methodology using the method of sieves. For example, one
could consider letting the Kth parametric model for Q consist
of discrete distributions with exactly K components, then use
some secondary criterion to select the value of K. In doing this,
Pledger (2000) recommended selecting the number of compo-
nents in Q by testing sequentially.

This approach no doubt would have better stability
than Q̂UNP, because mass points near 0 would tend to be elim-
inated. But it is not clear to us that this eliminates the problem.
There are also practical difficulties with this approach. Even
when testing the simplest hypothesis, one component versus
two components, the likelihood ratio does not have a simple
limiting distribution in the form of chi-squared or a mixture
of chi-squareds (Lindsay 1995). Admittedly, one could use a
bootstrap approach to find the critical value given a specific
null hypothesis. But that may not be practical when using an
EM-based computing algorithm due to the long run time. In ad-

Table 14. Simulation Results for the Arabidopsis thaliana
Root EST Data

Estimator ¯̂N M̂ s RMSE MAE 95%

N̂WL 9,249 9,158 695 770 560 (8,113, 10,762)
N̂u 9,811 9,354 1,725 1,944 1,055 (8,272, 13,749)
N̂c0 8,106 8,098 325 878 815 (7,427, 8,725)
N̂c1 10,200 10,211 393 1,343 1,281 (9,474, 10,933)
N̂c2 18,187 18,146 1,138 9,360 9,268 (16,278, 20,541)
N̂J 10,351 10,313 351 1,478 1,432 (9,679, 11,056)
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dition, based on our experience, such a testing device tends to
fit a most parsimonious model and often yields an overconser-
vative estimate (results not shown).

From the computing perspective, there is an additional ad-
vantage to using the NPMLE. When the number of compo-
nents K is fixed, the likelihood can be multimodal, in which
case the EM may converge to a local maximum. The algorithm
for NPMLE that we proposed here is guaranteed to converge
to a global solution to any penalized likelihood with a linear
or convex penalizing function and is unique in the truncated
Poisson case.

To allow more flexibility in the parametric approaches, one
might want to consider a mixture distribution for Q. For exam-
ple, in the Poisson–gamma model, one could assume a mixture
of gamma. We have considered this model but with the number
of components in Q unfixed. The optimal number of compo-
nents could be found by nonparametric maximum likelihood
estimation (Wang 2003). The performance of the resulting esti-
mator remains under investigation.

6.3 Confidence Assessment

We have mentioned two bootstrap approaches to confidence
assessment for N. One was Poisson-model based and involved
sampling species counts, and the other was multinomial-based,
sampling individuals from a population constructed from the
model, then aggregating counts.

Another possibility that has a more nonparametric flavor is
to generate D non-0 observations of X from the multinomial
distribution corresponding to the empirical distribution of the
non-0 counts, that is, fn(i) = ni

D for i = 1, . . . , t. We call this the
naive nonparametric bootstrap, because it treats D as a fixed
number. In actual sampling, D is a random variable that is criti-
cal in the estimation of N. One could fix this problem by using
a hybrid bootstrap, in which one would first sample D∗ from
the binomial (N̂,1 − f (0; Q̂)) distribution, then draw D∗ times
from the empirical multinomial.

We have found that, as expected, the naive nonparametric
bootstrap confidence interval is often narrower than that from
population method. For example, for the EST data, the for-
mer gave a 95% CI of (8,280, 10,549), slightly tighter than
the (8,113, 10,762) obtained by our multinomial method. The
95% CI by the Poisson-based bootstrap was (8,260, 10,760),
covering the naive one but not as large as the multinomial one.
This relationship supports our intuition that the multinomial
bootstrap will tend to be more conservative, and hence reliable,
than the others.

However, these findings are tentative. Firm comparisons, if
such are even possible, would require a very computationally
expensive investigation given the structure of the estimators and
the likely complex interplay of bias, variability, and coverage.

6.4 Bayesian Methods

We earlier offered a Bayesian interpretation of the likelihood
penalty function, but our methods really differ from a standard
Bayesian approach in two ways. First, our estimation of tun-
ing parameters in the penalty clearly differs from conventional
Bayesian analysis. However, there is a quasi-Bayes interpreta-
tion of what we did; we put a hyperprior on the tuning para-
meters, but instead of integrating them out, we “plugged in”

estimators for them. Second, our penalized likelihood has the
form p[θ(Q)]∏i

∫
f (xi;λ)dQ(λ), where the “prior” p[θ(Q)],

although it affects Q estimation, is unlike Bayes in that it does
not correspond to any actual distribution for Q. Just the same,
we believe that thinking of it as a “partial prior” does provide
some insight, especially into its role in weighting risk over the
parameter space. (Although more restrictive in construction,
penalties based on fictional data likelihoods offer a simpler in-
terpretation.)

In the conventional Bayesian analysis, prior(s) for Q (or the
parameters in Q) and N are completely specified (Blumenthal
and Marcus 1975; Blumenthal 1977, 1982; Hill 1979; Lewins
and Joanes 1984; Boender and Kan 1987). For example, a pop-
ular prior for the relative abundances pi given N in the multino-
mial version of model is the Dirichlet distribution (Lewins and
Joanes 1984; Boender and Kan 1987). Clearly, such a prior dis-
tribution explicitly specifies the form of the distribution of pi.
To make the model more flexible, one can further impose a
higher-level prior for the hyper-parameters in the Dirichlet dis-
tribution.

For example, for the same butterfly data as used here,
Boender and Kan (1987) used a symmetric Dirichlet prior and
came up with a posterior distribution for N that had a mode
of 940, a median of 1,020 and a mean of 1,054. These are sub-
stantially larger than those reported from any of the nonpara-
metric methods in Table 1. Unfortunately, there are very few
systematic comparisons or numerical results in the literature
evaluating the Bayesian approach. The flat likelihoods that we
found in this problem do suggest that the choice of prior can be
quite important here.

6.5 Final Thoughts

Whether thought of as Bayes with a partial prior or as a
way of improving frequentist risk, penalized likelihood meth-
ods have an element of subjectivity similar to Bayes methods.
One must select a penalty function and a tuning parameter, and
it is nigh impossible to make convincing statements about why
one choice should be uniformly superior to another. In fact, in
our particular case, because all penalties were functions of θ,

our algorithm was based on the fact that all of the estimators
of Q could be found by using the linear penalized function �2 at
different values of its tuning parameter. Thus all of the methods
were, in a sense, �2 estimators with different adaptive selections
of γ2. In the end, we were pleased because the methods that we
used here turned out to be highly effective over a range of mod-
els, but we can hardly make a claim for global optimality.

Finally, the computational methods given here for using
penalties in nonparametric likelihood estimation can be readily
extended to other applications where a mixture model is used.
Currently, application to the capture-mark-recapture problem
(Otis, Burnham, White, and Anderson 1978; Pledger 2000) is
under investigation.

APPENDIX A: PROOF OF PROPOSITION 1

(a) Suppose that (N̂, Q̂) is the unconditional MLE. Because �c is
completely determined by Q, given Q̂, N̂ must be 〈D(1 + θ̂ )〉; oth-
erwise, one can always increase the marginal likelihood by setting
N̂ = 〈D(1 + θ̂ )〉. In contrast, given θ(Q) = θ̂ , because �m is free
of Q, Q̂ must be the constrained maximizer given θ(Q) = θ̂ ; other-
wise, Lc can always be increased.
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(b) From (I), N̂ is completely determined by Q̂; therefore,
supN,Q{�(N,Q)} = supQ{�(N = 〈D(1 + θ̂ )〉,Q)} = supQ{�m(N,

Q)|N=〈D(1+θ(Q))〉 + �c(Q)}.
(c) Note that Stirling’s approximation for N̂! and (N̂ − D)! in Lm

gives

sup
N

{Lm(N|θ)}

= N̂!
D!(N̂ − D)!

[
θ

1 + θ

]N̂−D[
1

1 + θ

]D

≈
√

2π N̂N̂+.5e−N̂

D!√2π(N̂ − D)N̂−D+.5e−N̂+D

[
θ

1 + θ

]N̂−D[
1

1 + θ

]D
, (A.1)

as D → ∞, where the symbol “≈” means that the ratio of the two
sides goes to 1. Because argN sup(Lm|θ) = 〈D(1 + θ)〉 ≈ D(1 + θ),
by plugging N̂ = D(1 + θ) into (A.1), we obtain supN(Lm|θ) ≈
Poisson(D,D) × [ 1+θ

θ
]1/2 = e−DDD

D! [ 1+θ
θ

]1/2. The condition “N̂,

N̂ − D → ∞” can be unified as “D → ∞,” because N̂ = 〈D(1 + θ)〉
and N̂ − D = 〈Dθ〉. It also can be shown that the ratio of the evalua-
tions of (A.1) under N̂ = 〈D(1 + θ)〉 and N̂ = D(1 + θ) converges to 1
as D → ∞. Therefore, the difference of the logarithm of both sides
must go to 0 as D → ∞.

APPENDIX B: PROOF OF THEOREM 1

Let P̂γ1 and P̂γ2 be NPMLEs at penalties γ1 and γ2 from (6), and
let γ1 ≤ γ2. By the definition of NPMLE, we have

�γ1(P̂γ1 ) = �(P̂γ1 ) − γ1h[θ(P̂γ1 )] ≥ �(P̂γ2 ) − γ1h[θ(P̂γ2 )]
and

�γ2 (P̂γ2 ) = �(P̂γ2) − γ2h[θ(P̂γ2)] ≥ �(P̂γ1 ) − γ2h[θ(P̂γ1 )].
Adding both sides gives

(γ2 − γ1)h[θ(P̂γ1)] ≥ (γ2 − γ1)h[θ(P̂γ2)].
By monotonicity of the function h(θ) in θ , θ(P̂γ1) ≥ θ(P̂γ2), and thus
N̂γ1 ≥ N̂γ2 .

APPENDIX C: PROOF OF COROLLARY 1

(a) Note that h(θ) = log[ 1+θ
θ

] is a monotone-decreasing function

of θ . The conditional estimator N̂CNP corresponds to a penalty γ1 = 0
in �1, where N̂u to γ1 = .5. By Theorem 1, we have θ̂CNP ≥ θ̂u; thus
N̂CNP ≥ N̂u.

(b) Let P represent the unknown mixing distribution in the non-
parametric case and the unknown parameters in the parametric case (It
is straightforward to verify that the monotonicity in Thm. 1 also ap-
plies to the parametric case.) In the nonparametric case, we write P or
Q interchangeably, that is, �m(N,Q) ≡ �m(N,P) and �c(Q) ≡ �c(P).
By Proposition 1, the objective function corresponding to the full log-
likelihood can be written in the penalized form as �(P) = �c(P) −
γ [−�∗

m(θ)], where γ = 1 and �∗
m(θ) = �m(N,P)|N=〈D(1+θ)〉 depend-

ing only on θ . Because the un-penalized conditional MLE of θ , θ̂CNP,
is the estimate under γ = 0, it suffices to show that �∗

m(θ) decreases
monotonically in θ by Theorem 1 [or that −�∗

m(θ) increases in θ ]. Sup-
pose that we have θ1 < θ2 and N = 〈D(1 + θ1)〉,N + k = 〈D(1 + θ2)〉,
for k > 0. Let p1 and p2 be the success probability in the binomial dis-
tribution corresponding to θ1 and θ2. Then D

N+1 < p1 ≤ D
N , D

N+k+1 <

p2 ≤ D
N+k . Consider the two marginal likelihoods in the binomial

form,

L1 =
(

N
D

)

pD
1 (1 − p1)N−D,

and

L2 =
(

N + k
D

)

pD
2 (1 − p2)N+k−D.

It suffices to show that L1 > L2. Note that because L1 is a monotone
increasing function for p1 ∈ [ D

N+1 , D
N ], we have

L1 =
(

N
D

)

pD
1 (1 − p1)N−D

>

(
N
D

)(
D

N + 1

)D(

1 − D

N + 1

)N−D
(C.1)

≡
(

N + 1
D

)(
D

N + 1

)D(

1 − D

N + 1

)N+1−D

>

(
N + 1

D

)(
D

N + 2

)D(

1 − D

N + 2

)N+1−D

≡
(

N + 2
D

)(
D

N + 2

)D(

1 − D

N + 2

)N+2−D

...

>

(
N + k

D

)(
D

N + k

)D(

1 − D

N + k

)N+k−D

>

(
N + k

D

)

pD
2 (1 − p2)N+k−D

≡ L2. (C.2)

This proves the monotonicity of �∗
m(θ) in θ , and thus the result follows.

APPENDIX D: PROOF OF THEOREM 2

(a) Given the boundedness and closedness of the image set (L1(λ),

L2(λ), . . . , θ(λ)), the existence of a distribution P̂ω that maximizes
the penalized likelihood �ω(P) = �(P) − ωθ(P) is immediate by the
convex geometry optimization results of Lindsay (1995).

(b) By definition, P̂ is a local maximizer of �(P) − γ h[θ(P)] if and
only if the gradient inequality is true, that is,

D(P̂, λ) =
∑

j

nj

[
g( j;λ)

g( j; P̂)
− 1

]

− γ h′[θ(P̂)][θ(λ) − θ(P̂)]

≤ 0 ∀λ ∈ �.

If we let ω = γ h′[θ(P̂)], then the foregoing condition is exactly the
sufficient and necessary condition for P̂ to be the NPMLE in the lin-
earized version, namely �(P) − ωθ(P).

(c) If −γ h[θ(P)] is concave in θ , then one can show that the
penalized likelihood �(P) − γ h[θ(P)] is also concave in any path
(1 − α)P + αP∗, where P and P∗ are two arbitrary mixing distribu-
tions. First, note that a local solution P̂ satisfying the gradient condi-
tion from (b) must satisfy D(P̂, P̂∗) ≤ 0 ∀ P̂∗ (can be shown easily, see
also Lindsay 1995). Thus such a solution P̂ must be the global one, be-
cause otherwise, if we let P̂∗ be the global solution, then the gradient
inequality is violated along the path (1 − α)P̂ + αP̂∗ by concavity.

APPENDIX E: PROOF OF COROLLARY 2

(a) The result is almost immediate from Theorem 2. By definition,
the global solution P̂ must also be local, which implies that P̂ must
satisfy the gradient criterion as follows:

D(P̂, λ) =
∑

j

nj

[
g( j;λ)

g( j; P̂)
− 1

]

− γ1

θ(1 + θ)
[θ(λ) − θ(P̂)]

≤ 0 ∀λ ∈ �.
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Note that θ(λ) is not bounded at λ = 0. However, this is not a con-
cern, because θ(P̂) < ∞ gives γ1

θ[P̂](1+θ[P̂]) > 0. The linearized like-

lihood is bounded from above. The gradient criterion given earlier is
exactly the one for P̂ to be the NPMLE (global) for �2 = �(P)−γ2θ at
γ2 = γ h′(θ(P̂)).

The uniqueness of global solution in the linearized likelihood �2 is
guaranteed because the zero-truncated Poisson distribution is an ex-
ponential family distribution and has infinite support points. The mix-
ture model can never fit the data perfectly (see details in Lindsay and
Roeder 1993).

(b) If θ(P̂CNP) ≤ µ, then there exists a P̂CNP that maximizes �(P)

globally without penalty. Therefore, it must maximize �3 globally. If
θ(P̂CNP) > µ, then we are maximizing the penalized likelihood with a
concave penalty −γ3h(θ(P)). Because the penalized likelihood func-
tion is strictly concave, a sufficient and necessary condition for P̂ to
be a global maximizer is that P̂ is a local solution. By the results from
part (b) of Theorem 2, the conclusion is immediate. For the same rea-
son as in part (a), unboundedness of θ is not a concern. The uniqueness
is obtained for the same reason as in (a).

[Received January 2004. Revised September 2004.]
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