
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

Computational Statistics & Data Analysis 51 (2007) 2946– 2957
www.elsevier.com/locate/csda

A linearization procedure and a VDM/ECM algorithm for penalized
and constrained nonparametric maximum likelihood estimation for

mixture models
Ji-Ping Wang

Department of Statistics, Northwestern University, 2006 Sheridan Road, Evanston, IL 60208, USA

Received 9 July 2006; received in revised form 20 November 2006; accepted 21 November 2006
Available online 15 December 2006

Abstract

Suppose independent observations Xi , i = 1, . . . , n are observed from a mixture model f (x; Q) ≡ ∫
f (x; �) dQ(�), where �

is a scalar and Q(�) is a nondegenerate distribution with an unspecified form. We consider to estimate Q(�) by nonparametric
maximum likelihood (NPML) method under two scenarios: (1) the likelihood is penalized by a functional g(Q); and (2) Q is under
a constraint g(Q) = g0. We propose a simple and reliable algorithm termed VDM/ECM for Q-estimation when the likelihood is
penalized by a linear functional. We show this algorithm can be applied to a more general situation where the penalty is not linear,
but a function of linear functionals by a linearization procedure. The constrained NPMLE can be found by penalizing the quadratic
distance |g(Q) − g0|2 under a large penalty factor � > 0 using this algorithm. The algorithm is illustrated with two real data sets.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A mixture model arises as one models independent observations x1, . . . , xn generated from a parametric density
f (xi; �i ) where the parameter �i (∈ �) varies in i. To account for the heterogeneity of �, one assumes that the parameter
�i , is first independently generated from a mixing distribution Q(�), and then xi |�i from f (xi; �i ). Under this setting,
xi’s can be regarded as i.i.d. observations from the mixture density as follows:

f (x; Q) =
∫

f (x; �) dQ(�).

Mixture models have attracted tremendous attention for their successes in various fields. A mixture model attains great
flexibility by allowing � in f (x; �) to vary to accommodate the heterogeneity that is often inherent in natural populations.
For example, the abundance of distinct bird species within a wild ecological community may differ significantly
(Fisher et al., 1943). If we model the number of observed birds from each species with a Poisson model f (x; �), then �
varies as a consequence of the heterogeneity in bird abundance. Failure to account for the heterogeneity often results in
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severe under-estimation of the species richness (Bunge and Fitzpatrick, 1993). An extensive review of the applications
of mixture models can be found in Titterington et al. (1985) and McLachlan and Peel (2000).

Our attention here is focused on the situation where a parameter � ∈ RK determined by the mixture distribution
f (x; Q) is of interest, while little knowledge regarding the form of Q is available. Since the distribution Q is unknown,
� defines a functional of Q, mapping from an infinite-dimensional space to the real space, i.e. � : Q �→ RK , where
Q = {Q : Q is a probability measure}. A natural and appealing estimator of � is the plug-in estimator �(Q̂), where
Q̂ is the nonparametric maximum likelihood estimator (NPMLE) of Q (Lindsay, 1983, 1995). The plug-in estimator
is simple and robust since no assumption has to be made regarding the form of Q. More importantly �(Q̂) often is
consistent for �(Q) by consistency of Q̂ given identifiability and some technical conditions (Kiefer and Wolfowitz,
1956; Leroux, 1992; Van de Geer, 2002). Although asymptotic results regarding �(Q̂) beyond consistency remain
unknown in general, in some special situations (e.g. Susko et al., 1998) standard results do exist, and hence one can
construct the confidence interval for �(Q) or testing hypothesis H0 : �(Q) = �0 via standard methods, e.g. profile
likelihood method. To build the nonparametric profile likelihood on �, one needs to find the constrained NPMLE, i.e.

Q̂ = arg[Q:�(Q)=�0] sup{�0(Q; x)}, Q ∈ Q, �0 ∈ RK ,

where �0(Q; x) is the original log likelihood defined as �0(Q; x) := ∑
i log[f (xi; Q)].

Closely related to the constrained NPMLE, the penalized NPMLE method has been shown effective in stabilizing
the plug-in estimator in some important applications (Wang and Lindsay, 2005). Unlike many model-selection oriented
penalized likelihood approaches (Chen and Kalbfleisch, 1996; Leroux, 1992; McLachlan and Peel, 2000), the penalty
in these applications often concerns a function of the parameter (�) under estimation. The penalty works as a prior
distribution for � from the Bayesian perspective, bringing in the desirable shrinkage effect to the plug-in estimate �(Q̂).

Finding the constrained or penalized NPMLE is not trivial. The constrained NPMLE actually can be obtained by
penalized NPMLE method from a duality result (Lindsay, 1995; Susko et al., 1998). One existing algorithm is the
generalized ISDM by Susko et al. (1998), as an extension of ISDM algorithm by Lesperance and Kalbfleisch (1992).
In this paper we propose an alternative, namely, VDM/ECM, and show its simplicity and reliability in implementation.
In Section 2, we first introduce a linearization procedure for the penalized NPMLE that generalizes the result from
Wang and Lindsay (2005). In Section 3, we then discuss the VDM/ECM algorithm in detail for the penalized NPMLE.
In Section 4, we introduce some additional optimization results that bridge the penalized and constrained NPMLE, and
show how the VDM/ECM algorithm can be applied to the constrained NPML estimation. Some numerical results are
presented in Section 5.

2. Penalized NPMLE with linear and non-linear penalties

We first consider the simplest case where the likelihood is penalized by a linear functional. A linear functional h(Q)

is defined as follows:

h(Q) =
∫

h(�) dQ(�)

for some real and continuous function h(·). Let y1, . . . , yd be the distinct data points from the observed data X, and
nj =∑

iI (xi = yj ), then the penalized likelihood can be written as

�(Q) := �0(Q) − h(Q),

where �0(Q) = ∑
j [nj log[f (yj ; Q)] is the original unpenalized mixture likelihood. Define the extended likelihood

vector curve as

� = {L(�) = [f (y1; �), f (y2; �), . . . , f (yd; �), h(�)]T : � ∈ �},
and the extended likelihood vector space as M = conv(�) where “conv” stands for convex hull. Under this notation,
the log likelihood �(Q) can be regarded as a function defined in a finite-dimensional sub-space M, i.e. �(Q) ≡
�(f (y1; Q), . . . , f (yd; Q), h(Q)). In the following sections, all the discussions on the geometry of the likelihood
function �(Q) is referred to the extended likelihood vector space. If M is closed and bounded, we have the following
results (Lindsay, 1995; Susko et al., 1998):
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Theorem 1. (I) �(Q) is strictly concave in M. (II) There exists a solution, Q̂, to the penalized likelihood function, with
no more than d + 1 support points. (III) Define the extended gradient function as

D
Q̂

(�) =
d∑

j=1

nj

[
f (yj ; �)

f (yj ; Q̂)
− 1

]
− [h(�) − h(Q̂)], (1)

then Q̂ is NPMLE if and only if D
Q̂

(�)�0, ∀� ∈ �; furthermore, �0 is a support point if and only if D
Q̂

(�0) = 0.

Theorem 1 states that the gradient inequality criterion is still sufficient and necessary for Q̂ to be the NPMLE.
Now, we consider a more general situation where the log likelihood is penalized by a functional g involving m linear
functionals, i.e. g(h) = g(h1, h2, . . . , hm). The penalized log likelihood is

�(Q) = �0(Q) − g[h(Q)]. (2)

Note that g is not necessarily a linear functional of Q. In general, finding NPMLE from (2) becomes much harder
than when g is linear. Let Q̂� = (1 − �)Q̂ + ��� where �� denotes the degenerate distribution at �. Note that
h(Q̂�) = (1 − �)h(Q̂) + �h(�), therefore the likelihood function �(Q̂�) for a given Q̂ and � becomes a function of �.
A Q̂ is defined as a local solution if

D
Q̂

(�) = �

��
{�0(Q̂�) − g[h(Q̂�)]}|�=0 �0, ∀� ∈ �. (3)

Since the actual objective function based on �(Q) only involves terms defined in the extended likelihood vector
space, the evaluation of the directional derivative, i.e. D

Q̂
(�) will also involve terms in the same space. The fol-

lowing linearization theorem provides a way to convert the likelihood into an alternative objective function with
a linear penalty, such that NPMLE for (2) can be found by iteratively maximizing the alternative likelihood
function.

Theorem 2. Let g(h) = g(h1, . . . , hm) be a double-differentiable function with respect to h, where hi = hi(�) are
continuous functions of �. Define hi(Q) = ∫

hi(�) dQ(�), and g′
i (hQ) = �

�hi
g(h)|h=h(Q). Assume that the extended

likelihood vector space M = conv{[f (y1, �), . . . , f (yd, �), h1(�), . . . , hm(�)]T : � ∈ �} is compact, g′
i (hQ) and

hi(Q) are bounded for i = 1, . . . , m, ∀Q. Define

�∗(Q) = �0(Q) −
m∑

i=1

�∗
i hi(Q), (4)

then

(I) a necessary and sufficient condition for Q̂ to be a local solution for (2) is that Q̂ is the NPMLE (global) for the
linearized version (4) at �∗

i = g′
i (hQ̂

), for i = 1, . . . , m.

(II) If g(h) is convex, i.e. the Hessian matrix | �2g

�hi�hj
| is semi-positive definite ∀ h ∈ {h(Q) : Q ∈ Q}, then a sufficient

and necessary condition for that Q̂ is the global solution for (2) is that Q̂ is the NPMLE for the linearized version
(4) at �∗

i = g′
i (hQ̂

), for i = 1, . . . , m.

Proof. (I) The gradient function is given by D
Q̂

(�)=∑ nj [ f (yj ,�)

f (yj ;Q̂)
−1]−∑ g′

i (hQ̂
)[hi(�)−hi(Q̂)], ∀� ∈ �. Clearly

if g′
i (hQ̂

) is finite for i = 1, . . . , m, Q̂ is a local solution for the likelihood in (2) if and only if D
Q̂

(�)�0, ∀� ∈ �.

Meanwhile this condition is exactly the necessary and sufficient one for Q̂ to be the NPMLE for (4) at �∗
i = g′

i (hQ̂
).

(II) If g(h) is convex, then −g(h) is concave. It is easy to verify that the log likelihood is strictly concave in M.
Hence the local solution is also the global NPMLE. �
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Theorem 2 implies that a local solution for the penalized likelihood �0 − g(h) must be the global solution of the
linearized version. We will show in the next section that this can be achieved by an iterative VDM/ECM algorithm.

The boundedness of M, g′
i (hQ) and hi(Q), for i = 1, . . . , m is required to guarantee that the global maximum

likelihood is finite, and the gradient criterion is applicable. Otherwise, even if the likelihood is bounded from above, the
gradient criterion in Theorem 1 may fail. For example, if �0(Q) is bounded above, then so is �0(Q) − h2 for any linear
functional h such that h(�) ∈ (−∞, ∞). However, the gradient criterion in Theorem 1 cannot be satisfied for any Q̂

since the directional derivative D
Q̂

(�)=∑d
j=1nj [ f (yj ;�)

f (yj ;Q̂)
−1]−2h(Q̂)[h(�)−h(Q̂)] is not bounded from above. This

complexity can be viewed from another perspective. Suppose there exists NPMLE Q̂ for �(Q)−h2 and 0 < h(Q̂) < ∞.
So Q̂ is the constrained NPMLE under h(Q) = h(Q̂). Let �∗ be such that h(�∗) → −∞, and Q̂∗ = (1 − 	)Q̂ + 	��∗

(where ��∗ stands for a degenerate distribution at �∗) and 	 ≈ 0+. One can always force h(Q̂∗) ≈ −h(Q̂) while
�(Q̂∗) ≈ �(Q̂) due to the tiny weight 	. Practically, Q̂ and Q̂∗ will lead to indistinguishable penalized likelihood
value.

It is often not practical to have all the boundedness conditions satisfied. In some cases, one might restrain � to be
in a certain region to obtain the boundedness for the functionals. For example, for a Poisson mixture, if h(�) = �, then
clearly h is not bounded. However, one might want to force ��maxi (xi) or ��C for some constant C to bound h.

Sometimes we are interested in a penalized form g(h) =∑m
i=1�igi(hi) where �is are constant penalty factors, by

which we can penalize several functionals simultaneously. Consider the following likelihoods:

�(Q) = �0(Q) −
m∑

i=1

�igi(hi), (5)

�∗(Q) = �0(Q) −
m∑

i=1

�∗
i hi(Q). (6)

Define g′
i[hi(Q̂)]= dgi

dhi
|
hi=hi(Q̂)

. Clearly given similar boundedness conditions as in Theorem 2, a global solution from

(6) given �∗
i = �ig

′
i[hi(Q̂)] must be a local solution of (5). A sufficient condition for a local solution to be the global

one is that gi’s are all convex.
To see how the penalty parameter �i affects the estimation in (5) when g(h) =∑m

i=1�igi(hi), we have the following
result:

Theorem 3. Let Q̂ be the NPMLE under � = {�1, . . . , �m} for (5) and Q̃ be that under the same penalties except that
the penalty factor for gi is �̃i ��i for one fixed i. Then gi[hi(Q̂)]�gi[hi(Q̃)].

Proof. Omitted. �

Theorem 3 is an extension of the result obtained by Wang and Lindsay (2005) for one-penalty situation. It states
the fact that penalizing a functional gi in the likelihood reduces the value of gi(Q̂). Hence the stability of a plug-in
estimator �(Q̂), if unstable, can be potentially improved by applying an appropriate penalty.

3. A VDM/ECM algorithm for penalized NPMLE

Various algorithmic methods are available for finding NPMLE in the mixture setting. The well-known algorithms
include EM method (for fixed number of components, Laird, 1978), the Vertex Direction Method (VDM,
Lindsay, 1983), the Vertex Exchange Method (VEM, Böhning, 1985), the Intra-simplex Direction Method (ISDM,
Lesperance and Kalbfleisch, 1992; Susko et al., 1998) and other hybrid methods such asVDM/EM (DerSimonian, 1986;
Lindsay and Roeder, 1993) and EM/VEM (Böhning et al., 1992). In particular, the ISDM algorithm in Susko et al., 1998
was designed for the constrained and penalized NPMLE. Here we discuss a hybrid ofVDM and Expectation–conditional
–maximization (ECM, Meng and Rubin, 1993) for the penalized NPML estimation. This method is simple but reliable.
We will apply it to the constrained NPMLE in the next section.
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3.1. Linear penalty

The VDM/ECM is a variant of VDM/EM where the EM procedure is replaced by ECM. The VDM step identifies the
point on a grid of � ∈ � that achieves the maximum gradient given the current estimate of Q. This point is then added
into the support of Q. In the subsequent ECM step, Q is refined until a local maximum is obtained. In the following,
we first discuss the algorithm in detail for the penalized likelihood with one linear penalty, i.e. �(Q) = �0(Q) − h(Q),
and then extend it to the situation where the penalty is a function of linear functionals.

Since the NPMLE Q̂ will be a discrete distribution with a finite number of support points, the log likelihood function
can be written in the form of a finite mixture with a Lagrange multiplier 
 as follows:

�2 =
∑

i

log[f (xi)] −
∑

k

�khk + 


(∑
k

�k − 1

)
, (7)

where �k and �k are the kth component and its weight for k = 1, . . . , K , fk(·) ≡ f (·; �k) and hk ≡ h(�k). Define the
latent data, zik = 1 if xi was generated from the kth component and 0 otherwise for i = 1, . . . , n (the augmented data
will be denoted as Z below). Then the complete likelihood is

�3 =
∑

i

∑
k

zik log[fk(xi)] +
∑

i

∑
k

zik log(�k) −
∑

k

�khk + 


(∑
k

�k − 1

)
. (8)

Let � = (�T, �T)T, where � and � are the mixture components and corresponding weights. In the following, we use a
superscript (t) to index the VDM iteration. The VDM/ECM algorithm alternates among the following steps:

(1) Let G be a fine grid for � in �. Given the current estimate �(t) = (�(t)T
, �(t)T

)T find the grid point �(t) ∈ G that
maximizes the gradient function (1).

(2) Let Q(t)
� =(1−�)Q̂(t)+���(t) , where ��(t) is the degenerate distribution at �(t), find the optimal �(t) that maximizes

the following log likelihood function:∑
i

log[f
Q

(t)
�

(xi)] − h(Q
(t)
� )

using Newton’s method.
Note: The log likelihood function is strictly concave in �, so the solution exists and is guaranteed unique.

(3) Let �∗ = (�(t)T
, �(t))T,�∗ = {(1 −�)�(t)T

, �(t)}T. Run the ECM procedure (see below) using �∗ and �∗ as starting
values to obtain an update Q̂(t+1).

(4) Repeat the above steps until the algorithm converges. The criterion used for convergence here is Sup� D
Q̂

(�)<0.005.
This guarantees that the log likelihood at convergence will be no more than 0.005 below the true maximum (Lindsay,
1995, p. 132).

The ECM step uses �(0) ≡ (�∗T, �∗T)T as starting values. A superscript (m) here indexes the iterations within the ECM
loop. Let K(t) be the number of components in Q̂(t). The ECM step proceeds as follows:

(1) E step: given the current estimate, define �(m) = (�(m) T, �(m) T)T,

z
(m+1)
ik := E(zik|�(m)) = f

(m)
k (xi)�

(m)
k∑

kf
(m)
k (xi)�

(m)
k

.

(2) CM step: to maximize the complete likelihood function (8), we need to solve the following 2K(t) + 1 equations
simultaneously:

∑
i

z
(m+1)
ik

1

�k

+ 
 − hk = 0, for k = 1, . . . , K(t), (9)
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∑
k

�k = 1, (10)

∑
i

z
(m+1)
ik

f ′
k(xi)

fk(xi)
− �kh

′
k = 0, for k = 1, . . . , K(t). (11)

The number of free parameters reduces to 2K(t) (including 
) due to the constraint on �k’s. To solve these equations
simultaneously is difficult as each equation involves multiple parameters and is non-linear. We have developed a
sequential conditional–maximization strategy as follows:

• M1 step: the first step is to update � from (9) + (10) by fixing � at �(m). From (9) we obtain

�k = −
∑

iz
(m+1)
ik


 − h
(m)
k

. (12)

By (10),

∑
k

−
∑

iz
(m+1)
ik


 − h
(m)
k

= 1.

Define the function w(
)=∑i[−
∑

i z
(m+1)
ik


−h
(m)
k

]− 1. Note 
 must satisfy 
�mink hk to guarantee �k > 0. One can show

there is one and only one solution by noting that w(
) is a monotone function of 
 ranging from −1 to ∞ for

�mink hk . The update 
(m+1) = 
(Z(m+1), �(m)) can be reliably found by Newton’s method, and hence �(m+1)

from (12) given 
(m+1).
We call this step from (�(m), �(m)) to (�(m), �(m+1)) the M1 step, in which the monotonicity of the full log likelihood
is guaranteed.

• M2 step: this step updates � based on �(m+1), 
(m+1). Given �(m+1) and 
(m+1), Eq. (11) only involves �k alone.
Newton’s method can be used to find the update �(m+1). Again the log likelihood increases in the M2 step since we
are maximizing the objective function treating (Z(m+1), �(m+1), 
(m+1)) as fixed.

3.2. Penalty is a function of linear functionals

Finding the penalized NPMLE with an arbitrary non-linear penalty can be computationally intractable. For a class
of non-linear penalties where the penalizing functional can be expressed as a function of linear functionals, e.g. g(h),
direct maximization of the likelihood �0(Q)−g(h) can be as simple as the linear case based on the results in Theorem 2.
A local maximum is guaranteed. We can iteratively maximize the linearized penalized likelihood using the VDM/ECM
as follows:

(1) Initialize h = h0 = (h10, h20, . . . , hm0)
T, find the penalized NPMLE Q̂(0) for the linearized penalized likelihood

(4) under �∗
i = g′

i (h0) for i = 1, . . . , m.

(2) In the tth iteration, update h(t) = h[Q̂(t−1)] and find the penalized NPMLE Q̂(t) for the penalized likelihood (4)
under �∗

i = g′
i (h

(t)).
(3) Repeat step 2 until |h(t) − h(t−1)|� tol for some tol > 0.

4. Constrained NPMLE by penalizing

The marked reliability and simplicity of VDM/ECM algorithm make it a good alternative for constrained NPMLE
when the constraint functionals are linear or functions of linear functionals. If the constraint is a scalar constraint, i.e.
g(Q) = g0, then one can tune the penalty factor � in the likelihood �0(Q) − �g(Q) until g(Q̂�) = g0 for a certain �,
and Q̂� is the constrained NPMLE (see the duality result in Lindsay (1995, p. 143). In particular, the monotonicity
results in Theorem 3 point out the direction in which to tune � (increase or decrease) towards the target constraint.
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For example, if g(Q̂�) > g0 given the current �, then one needs to increase �, and vice versa. This procedure requires
that g(Q̂�) is a continuous function of � at least around g(Q̂) where Q̂ is the true constrained NPMLE. If fitting the
constrained NPMLE is to build the profile likelihood on g(Q), then the log likelihood value evaluated at the penalized
NPMLE Q̂� for a given �, i.e. �0(Q̂�), is exactly the profile likelihood value at g(Q) = g(Q̂�). Hence one only needs
to find the penalized NPMLE at different �’s in order to construct the profile likelihood.

In a more general situation where multiple scalar constraints exist, to obtain the constrained NPMLE by tuning the
penalty factors can be much harder than the single constraint case. Here we adopt the approach by Susko et al. (1998),
to penalize a quadratic distance function with a large positive penalty factor, but with a different implementation.

Suppose we need to find NPMLE under the constraint g(Q) = g0, where g(Q) ≡ g[h(Q)] = (g1(h), . . . , gK(h))T,
g0 ≡ (g10, g20, . . . , gK0)

T and h(Q) ≡ (h1, . . . , hM)T, where h are linear functionals. We further assume that M �K

such that the constrained NPMLE solution exists. We consider the log likelihood function with a quadratic penalty as
follows:

�0(Q) − �[g(Q) − g0]T[g(Q) − g0], � > 0. (13)

Note the concavity of the penalized likelihood function in the extended likelihood vector space does not necessarily
hold. A local solution is not necessarily the global one. If we let � → ∞, a local solution under � eventually will
satisfy the constraint g = g0. To see this, let Q̂1 and Q̂2 be the NPMLE under penalties �1 ��2 > 0. By monotonicity in
Theorem 3, |g(Q̂1)−g0|� |g(Q̂2)−g0|, where | · | is the Euclidean norm. Intuitively as we increase � to ∞, eventually
g → g0. This result is formally stated in the following theorem.

Theorem 4. Suppose the same compactness and boundedness conditions as inTheorem 2 hold.We consider to maximize
�0(Q) under the constraint g(Q) ≡ (g1(h), . . . , gK(h))T = g0 ≡ (g10, g20, . . . , gK0)

T, where h = (h1, . . . , hM) are
linear functionals of Q for M �K . Let Q̂� be the mixing distribution that solves Q= argQ sup{�0(Q)−∑m�∗

mhm(Q)}
for �∗

m=2∗�
∑

k(gk(h)−gk0)g
′
km(h), i=1, . . . , m, where g′

km(h) ≡ �gk

�hm
|h=h(Q). We assume |g(Q̂�)−g0| is continuous

in �; furthermore the constrained subspace M∗ = {[f (y1; Q), f (y2; Q), . . . , f (yd; Q)]T : g(Q) = g0, Q ∈ Q}, is
nonempty such that there exists at least one point in M∗ satisfying �0(Q) > − ∞. Then

(I) if M∗ is convex, then Q̂� converges to the global solution that satisfies the constraint g(Q�) = g0 as � → ∞;
(II) otherwise, Q̂� converges to a local solution satisfying the constraint g(Q�) = g0 as � → ∞.

Proof. By Theorem 2, Q̂� defined above, must be a local solution for �0(Q) − �(g − g0)
T(g − g0). As � → ∞,

|g − g0|Q̂�
must go to zero, i.e. lim�→∞ g(Q̂�)= g0, otherwise Q̂� is beat by some Q̂ that satisfies g(Q)= g0 (such a Q

exists by assumption). Let Q̂�=∞ ≡ lim�→∞Q�. Therefore Q̂�=∞ is the constrained local solution for the likelihood
�0(Q) under constraint g(Q) = g(Q̂�=∞) = g0. If M∗ is convex, because of strict concavity of the unpenalized log
likelihood �0(Q) over M∗, the local solution must be the global one (Luenberger, 1969, p. 191). If the convexity does
not hold, Q̂�=∞ in theory can be a local solution. �

Remark 1. Obviously the convexity of the constrained likelihood vector space holds when g is a linear function of
h. If g is not a linear function of h, then the convexity may fail. For example, suppose we have g(h) = h2 where
h(Q) is linear in Q and h(Q) ∈ (−∞, ∞). If h(Q1) = −h(Q2) = h0 > 0, then g[h(Q1)] = g[h(Q2)]. However
−h0 < h[	Q1 + (1 − 	)Q2] = (2	 − 1)h0 < h0 for 0 < 	 < 1. Therefore given two points fQ1 , fQ2 ∈ M∗ under the
constraint g[h(Q)] = h2

0 in Theorem 4, 	fQ1 + (1 − 	)fQ2 /∈ M∗. Consequently, the solution from the gradient criterion
can be a local one.

5. Numeric results

5.1. Toxicological data

We illustrate theVDM/ECM algorithm by fitting the constrained NPMLE to the toxicological data (Table 1) published
in Weil, 1970, which was analyzed by Susko et al. (1998). The random variable xij is assumed to have a Binomial
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Table 1
Toxicological data (Weil, 1970)

Control x1j 13 12 9 9 8 8 12 11 9 9 8 11 4 5 7 7
m1j 13 12 9 9 8 8 13 12 17 10 9 13 5 7 10 10

Treatment x2j 12 11 10 9 10 9 9 8 8 4 7 4 5 3 3 0
m2j 12 11 10 9 11 10 10 9 9 5 9 7 10 6 10 7
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Fig. 1. Profile likelihood on the mean of mixing distribution for the toxicological data.

mixture distribution Bin(mij , Q(p)), where i =1, 2 indexes the control or treatment group, respectively, j =1, . . . , 16
the replicates. We are interested in how the mean and variance of Q(p) differ between the treatment and control groups.

The unpenalized NPMLE Q̂ for the control group is: �̂1 = (0.85700, 0.94831) and �̂1 = (0.55236, 0.44764); for
the treatment group, �̂2 = (0, 0.47180, 0.92250) and �̂2 = (0.05947, 0.26364, 0.67689). This gives a contrast of mean
(control vs treatment) as 0.898 vs 0.749, and variance as 0.002 vs 0.074.

The mean of the mixing distribution is a linear functional, i.e. �(Q) = ∫
p dQ(p). Since the variance 
2(Q) =∫

p2 dQ(p)−�2(Q), by the linearization theorem, to maximize the penalized likelihood �(Q)= �0(Q)− �
2(Q), we
need to maximize the alternative objective function �1(Q) = �0(Q) − �

∫
p2 dQ − �∗�(Q) iteratively. The NPMLE

Q̂ for �(Q) must also be the NPMLE for �1(Q) at �∗ = � ∗ 2 ∗ �(Q̂). The nonparametric profile likelihood on �(Q)

and 
2(Q) are presented in Figs. 1 and 2 with a horizontal cutoff line −�2
0.95,df =1 = −3.85. The variance plot (Fig. 2)

was essentially the same as reported in Fig. 3 of Susko et al. (1998), however, the profile plot for �(Q) was slightly
different from Fig. 1 of Susko et al. (1998). We suspect that the likelihood plot in Fig. 1 by Susko et al. (1998) was not
2*loglikelihood as labeled, but loglikelihood.

The two plots provide insights into �(Q) and 
2(Q) for the control and treatment groups. For example, the control
group appears to have a larger mean of p than the treatment group; the treatment group is more heterogeneous regarding
the success rate p than the treatment group. However, because the nonparametric likelihood ratio statistic does not follow
a standard �2 distribution, conclusions cannot be drawn formally.

5.2. Expressed sequence tag (EST) data

The second example (Table 2) is adapted from a genomic study by Wang and Lindsay (2005) where the total number
of expressed genes in a cDNA library needs to be estimated using the expressed sequence tag (EST) data. Briefly a
cDNA library is a population that contains millions of cDNA clones derived from N (unknown) distinct gene species.
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Fig. 2. Profile likelihood on the variance of mixing distribution for the toxicological data.
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Fig. 3. Profile unconditional and conditional likelihood on N for EST data.

Table 2
Arabidopsis thaliana root EST data

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17+ D

nj 2187 490 133 121 37 51 22 19 7 8 6 7 6 4 5 5 18 3126

Each particular gene may have thousands of clones in the library. A random sample of S clones is obtained and they
are classified into D distinct gene species. Let xi , i = 1, . . . , D be the number of clones (individuals) sampled from
the ith observed gene. The data then can be summarized by a sufficient statistic n = (n1, . . . , nt ) where t = max(xi)
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and nj = ∑
iI {xi = j}. Assuming Xi follows a Poisson mixture distribution f [x; Q(�)] = ∫ e−��x

x! dQ(�), then the
likelihood can be written as

L(N, Q) =
(

N

n1, . . . , nt

) t∏
j=0

[f (j ; Q)]nj

∝
(

N

D

)
f (0; Q)N−D[1 − f (0; Q)]D ×

∏
j>0

[
f (j ; Q)

1 − f (0; Q)

]nj

≡ Lm(N, Q) × Lc(Q). (14)

There exist two likelihood-based approaches in N-estimation, namely, conditional MLE or unconditional MLE (see
Sanathanan, 1977). The conditional one is to find the MLE Q̂ first from Lc(Q), then estimate N based on the marginal
likelihood by

N̂ = D�(Q̂),

where �(Q̂) = f (0;Q̂)

1−f (0;Q̂)
. The log conditional likelihood can be expressed in a different form, involving probabilities of

a mixture of zero-truncated Poisson distributions as follows (Wang and Lindsay, 2005):

�c(P ) =
∑
j

nj log[g(j ; P)], (15)

where g(j ; P) = ∫ e−��j

j !(1−e−�)
dP(�), and

dP(�) = (1 − e−�) dQ(�)∫
(1 − e−�) dQ(�)

. (16)

If Q is defined on � = (0, ∞), then

dQ(�) = (1 − e−�)−1 dP(�)∫
(1 − e−�)−1 dP(�)

.

The P − Q relationship is a re-weighting of the support points in the mixing distribution. Under P, the conditional
likelihood can be regarded as that of i.i.d. observations from a mixture of zero-truncated Poisson distribution, and hence
the NPMLE algorithm can be applied. In addition, the functional �(Q) can be expressed as a linear functional of P i.e.
�(Q) ≡ �(P ) = ∫

(e� − 1)−1 dP(�). Therefore we can investigate the profile likelihood on �(P ), or equivalently on
N = D�(P ).

To construct the profile likelihood on �, we consider the following penalized likelihood:

�
�
c(P ) = �c(P ) − ��(P ). (17)

Let P̂ be the resulting NPMLE. If � > 0, then clearly �(P̂ ) < ∞. If � = 0, then P̂ may include a component �̂(1) that
can be arbitrarily close to zero (Wang and Lindsay, 2005), such that �(P̂ ) ≈ ∞. Note that in the Poisson distribution,
if one component has � = 0, then it only generates 0. However, if � = 0+, then for the zero-truncated probability g,
we have lim�→0g(1; �) = 1. The algorithm can push the smallest component in the mixture to be arbitrarily close to
zero to improve the fit at j = 1. The global maximum likelihood is often obtained after including a component that
is essentially zero. If � < 0, since �(�) is unbounded above in �, and hence so is the maximum penalized likelihood
form (17).

Let �̂0 be the plug-in estimate at the unpenalized NPMLE P̂0 (at � = 0). If �̂0 < ∞ then the profile likelihood at
� = �̂0 is �c(P̂0). At � > �̂0, since including a tiny component with a negligible weight can inflate �(P̂ ) to any value
while the change of likelihood value can be controlled at an arbitrarily tiny level, the profile likelihood will be equal to
�c(P̂0) from a limit point of view. On the other hand, if �̂0 = ∞ then the profile likelihood at � < �̂0 can be obtained
by tuning � > 0.
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Alternatively one can investigate the profile full likelihood on N based on (14). For a given N corresponding to
�N = N

D
− 1, we can fit NPMLE for a Poisson mixture to obtain Q̂�N

. The N̂ that attains the maximum profile
likelihood is the unconditional estimator of N. For EST data in Table 2, the profile conditional likelihood and full
likelihood are compared in Fig. 3.

Fig. 3 displays very similar relationship between N̂ and the two profile likelihoods. The profile unconditional
likelihood becomes flat rapidly when N increases above N̂ , and it eventually converges to a constant as N → ∞
(the minimum N that attains the maximum profile conditional likelihood is larger than that from the unconditional
likelihood. This is not clearly displayed from Fig. 3 because of the scale of plot. Theoretical justification of this can be
found in Wang and Lindsay, 2005). This behavior is driven by the properties of the likelihood function. As N increases,
a component � = 0 is added in �̂ and its weight increases. Given a mixing distribution Q� with � = (0, �T

1 ) and
�� = (�, (1 − �)�T

1 ), one can show that the conditional likelihood does not change with � if �T
1 and �T

1 are fixed. This
implies that if (�, ��) gives the maximum conditional likelihood, then Q�∗ with (�, ��∗) also does ∀�∗ ∈ [0, 1). For
a given N the marginal likelihood is maximized at f (0) = N−D

N
. Hence as N climbs up, the algorithm tends to keep

(�T
1 , �T

1 ) unchanged, while tuning � to make Q̂� maximize the conditional and marginal likelihood simultaneously.

Since the log marginal likelihood with f (0; Q�) = N−D
N

converges to log( e−DDD

D! ) (Wang and Lindsay, 2005, Eq. (9)),
the profile unconditional likelihood converges.

If there were a cutoff line for a given confidence level, e.g. −3.85 for 95% for a �2
df =1 distribution, then the resulting

confidence interval from both profiles are very similar. In particular the upper bound is ∞. This phenomenon reflects
the theoretical possibility that under the infinite population assumption there can be many extremely rare genes in
the cDNA library. On the other hand, since in many real problems N>∞, the NPMLEs can be unstable because
a small/tiny component is often fit in P̂ . Imposing some ad hoc penalties or priors can greatly improve the plug-in
estimator N̂ (Wang and Lindsay, 2005).

6. Discussion

The contribution of this paper is VDM/ECM algorithm and a linearization procedure for the penalized or constrained
NPML estimation when the penalty or constraint is linear or a function of linear functional(s). This algorithm is EM-
based, and thus works very reliably. The number of outer iterations (VDM/ECM) is often roughly equal to the number of
components in the NPMLE solution since in each iteration a new component is added into the support and then updated.
Within each VDM/ECM iteration, the embedded EM for the finite mixture can be time-consuming, depending on the
data set size and fraction of missing information (McLachlan and Krishnan, 1997). The author experienced difficulty
in implementing the existing ISDM algorithm by Lesperance and Kalbfleisch (1992) and Susko et al. (1998), and
therefore cannot make a quantitative comparison of the two algorithms regarding performance. The codes were written
in R and JAVA and available on request. The running time for the JAVA codes can range from several milliseconds
to several seconds on a Linux machine with CPU frequency 1.7 GHz. For the EST data example, the average running
time for any fixed penalty is about 2 s.

The usefulness of the algorithm depends on the theoretical development the NPML estimation of the mixture models.
Unfortunately the knowledge on general theory in asymptotics beyond weak consistency remain limited (if exists). We
illustrated the algorithm with two real examples. The profile likelihood plots in both case studies provide insights into
the parameter under comparison or estimation, however, rigorous conclusion is undrawable at this moment.
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