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Abstract: For capture–recapture models when covariates are subject to measurement errors and missing
data, a set of estimating equations is constructed to estimate population size and relevant parameters. These
estimating equations can be solved by an algorithm similar to the EM algorithm. The proposed method is
also applicable to the situation when covariates with no measurement errors have missing data. Simulation
studies are used to assess the performance of the proposed estimator. The estimator is also applied to a
capture–recapture experiment on the bird species Prinia flaviventris in Hong Kong. The Canadian Journal
of Statistics 37: 645–658; 2009 © 2009 Statistical Society of Canada

Résumé: Pour les modèles de capture-recapture où les covariables sont sujettes à erreurs ou encore man-
quantes, un ensemble d’équations d’estimation est obtenu afin d’estimer la taille de la population et les
paramètres pertinents. Ces équations d’estimation peuvent être résolues par un algorithme similaire à
l’algorithme EM. Cette méthode est aussi applicable lorsqu’il y a des valeurs manquantes dans les covariables
et que celles-ci sont mesurées exactement. Des études de simulations illustrent la performance de l’estimateur
proposé. L’estimateur est aussi appliqué à une expérience de capture-recapture sur l’espèce aviaire Prinia fla-
viventris de Hong Kong. La revue canadienne de statistique 37: 645–658; 2009 © 2009 Société statistique
du Canada

1. INTRODUCTION

Estimation of population size is one of the most important issues in ecology. Heterogeneity
among individuals is the most difficult problem to deal with in population size estimation. Using
covariates to explain heterogeneity in capture probability is one of the more promising approaches
(Pollock, 2002). However, an individuals’ covariates in capture–recapture may be subject to
measurement error or may be missing.

Measurement error is a common problem in regression analysis and has received much atten-
tion in literature (Carroll et al., 2006). However, in capture–recapture studies, only a very limited
body of literature has discussed what may happen when there are errors in measuring the covari-
ates (Pollock, 2002). For analysis of closed capture–recapture data associated with covariates,
the approach based on the conditional likelihood and the Horvitz–Thompson estimator proposed
by Huggins (1989) has become a standard method. Following this approach, Hwang & Huang
(2003) investigated how covariate measurement errors affect the estimation of population size for
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the discrete-time capture–recapture model described in Huggins (1989). They found that ignoring
the measurement error yields a biased estimator. They proposed a refined regression calibration
estimator to improve estimation of the regression coefficients in the capture probabilities and then
using them in an adjusted Horvitz–Thompson estimator.

For the model considered in Hwang & Huang (2003), the variances of the measurement errors
are assumed known, and for each captured individual, only one observation of covariates is used.
For the data relating the bird species Prinia flaviventris, which was used for illustration in their
paper, there are replicates of measurement for the birds which were captured more than once.
The information based on the replicates makes it possible to avoid the assumption of known
variances of measurement errors. Also, it is found that some measurements were not recorded for
each capture. In the example, for two of the captured birds, each was captured three times but the
covariates were measured only twice; another bird was captured once but no measurement was
recorded. The missing covariates may be due to observer oversight, or it may be that measurement
could not be taken. For discrete-time capture–recapture experiments with missing covariates, even
without measurement error, there is no available estimator for population size. For the method
used by Hwang & Huang (2003), the bird with no measurement records has to be excluded from
the analysis.

Yip, Lin & Xi (2005) considered a continuous-time capture–recapture model where mea-
surement error and missing data are incorporated. A semiparametric method for population size
estimation was proposed, and the capture time for each capture is essential for the method. How-
ever, most of the real data of capture–recapture studies exist in discrete-time form. When applying
a continuous-time model to a discrete-time data, serious biases occur if the number of capture
occasions is not sufficiently large; see Xi, Yip & Watson (2007). In this paper, we consider the
discrete-time closed capture–recapture model proposed by Huggins (1989), but we assume that
the covariates are subject to measurement error and may be missing completely at random (i.e.,
MCAR, see Little & Rubin, 2002) for each capture. For each captured individual, measurement is
supposed to be taken for each capture (including recapture) but not always, that is, there are repli-
cates of measurement (with errors) but missing data are allowed. The variances of measurement
errors are assumed unknown. Using an approach similar to that of Yip, Lin & Xi (2005), a set of
estimating equations is constructed to estimate the population size and the relevant parameters.
These estimating equations can be solved using an algorithm similar to the EM algorithm. The
proposed method is also applicable when covariates are subject to missing data only (with no
measurement errors). The model considered by Hwang & Huang (2003) is a special case of the
model proposed here. Section 2 specifies the model and the inference procedure. In Section 3,
simulation studies are conducted to assess the performance of the proposed estimator, which is
also compared with existing estimators. In Section 4, the proposed method is applied to the data
of the bird species P. flaviventris in Hong Kong Mai Po Bird Sanctuary. A short discussion is
given in Section 5.

2. THE ESTIMATING PROCEDURES

2.1. Model and Notations
Let i = 1, . . . , ν index the individuals in a closed population; let l = 1, . . . , t index the capture
occasions, and suppose that δil denotes the indicator function for whether or not the ith individual is
captured in the lth capture occasion. Individuals are assumed to act independently. The probability
of being captured is related to the covariates via a logistic function

P(δil = 1|Zi) = exp
(
βTZ∗

i

)
1 + exp

(
βTZ∗

i

) � H(βTZ∗
i ), i = 1, . . . , ν, l = 1, . . . , t,
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where Zi is an s× 1 vector corresponding to the covariates of the ith individual, Z∗
i = (1,ZT

i )T

and β = (β0, β1, . . . , βs)T is the coefficient vector. This probability is independent of l, that is,
the model considered is Mh (see Otis et al., 1978). Since Zi is measured with random errors,
instead of observing the true Zi, only the surrogates Wij are observable, where

Wij = Zi + εij, j = 1, . . . , mi (mi � ni),

where εij is the measurement error vector, ni is the total number of capture times for the ith
individual among which measurement is taken mi times. Since the model considered is Mh, we
need not distinguish on which capture occasion the individual is captured: thus, we let j take
values from 1 to mi. When ni > 0 but mi = 0, this means the covariate is missing. For those
individuals uncaptured during the whole experiment, ni = mi = 0.

We consider the model in a parametric framework, and assume εij
i.i.d.∼ fε(εij; φ), Zi ∼

fz(Zi; α). We assume the forms of fε and fz are known, φ and α are corresponding unknown
parameter vectors. The model considered in Hwang & Huang (2003) assumes normality of fε
and fz, mi = 1 for all the captured individuals, and the variance of εij is known.

2.2. Estimating the Parameters and Population Size
Let�i = {δil, l = 1, . . . , t} denote the capture history for the ith individual. LetWi = {Wij, j =
1, . . . , mi}, and when mi = 0, define Wi as a null-set. Under the MCAR assumption, the miss-
ingness of Wij does not depend on the actual value of missing data Wij , nor on any observed
data. Therefore, the inference regarding the probability of missingness can be made solely based
on Wi and t. The likelihood function for ρ = (α,φ,β) based on data D = {�i,Wi, i = 1, . . . , ν}
is given by

L(ρ) =
ν∏
i=1

+∞∫
−∞

f (�i|Zi; β)f (Wi|Zi; φ)f (Zi; α) dZi (1)

where

f (�i|Zi; β) =
t∏
l=1

H(βTZ∗
i )
δil{1 −H(βTZ∗

i )}1−δil ,

f (Wi|Zi; φ) =
mi∏
j=1

fε(Wij − Zi; φ) and f (Zi; α) = fz(Zi; α).

For mi = 0, let f (Wi|Zi; φ) = 1.
The likelihood (1) is not a closed form and it has many of the computational difficulties found

in mixed models (McCulloch & Searle, 2001). The EM algorithm provides a useful tool to solve
such problems; see Dempster, Laird & Rubin (1977). If the population size ν is known, the EM
algorithm can be used to estimate (α,φ,β). However, in a capture–recapture experiment ν is also
unknown and is of interest. Thus, the EM algorithm cannot be applied directly. Following the idea
in Yip, Lin & Xi (2005), in each iteration step of the EM algorithm, we insert a Horvitz–Thompson
type estimator for updating ν. Thus, we construct a set of estimating equations for parameters
(ρ,ν), and an algorithm similar to the EM algorithm is used.

For the complete data of the ith individual, (�i,Wi,Zi), the corresponding likelihood is the
integrand of (1), denoted by Li(ρ). In the maximization step of the EM algorithm (if ν is known),
the conditional expectation of

∑ν
i=1 logLi(ρ) (given the observed data) is maximized. All of
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the parameter estimates in the maximization step depend on the conditional expectation of some
function of Zi, namely E{h(Zi)|�i,Wi; ρ}. We denote it by Ei{h(Zi)}. h(Zi) can be derived
from the given forms of the density functions. The maximum of the conditional expectation of∑ν
i=1 logLi(ρ) with respect to α, φ, β is obtained at

ν∑
i=1

Ei

{
∂ log fz (Zi; α)

∂α

}
= 0, (2)

ν∑
i=1

Ei


mi∑
j=1

∂ log fε
(
Wij − Zi; φ

)
∂φ

 = 0, (3)

ν∑
i=1

Ei

{
∂ log f (�i|Zi; β)

∂β

}
= 0, that is,

ν∑
i=1

Ei[{ni − tH(βTZ∗
i )}Z∗

i ] = 0. (4)

In the case of mi = 0,
∑mi
j=1 in (3) equals zero since f (Wi|Zi; φ) = 1. We denote the left hand

sides of (2), (3), (4) as
∑ν
i=1 uαi(ρ),

∑ν
i=1 uφi(ρ),

∑ν
i=1 uβi(ρ), respectively. The means of these

summations are zero because they are score functions. For the individuals which have never
been captured during the whole experiment, their Li(ρ) are the same. Therefore, the conditional
expectation of

∑ν
i=1 logLi(ρ) is a linear function of ν, thus, a score function for ν cannot be

obtained by maximizing the conditional expectation. Based on the idea of the Horvitz–Thompson
estimator (Horvitz & Thompson, 1952), we construct an estimating equation for ν as follows:

ν∑
i=1

{
Ei

(
Yi

p∗
i

)
− 1
}

= 0, (5)

where Yi is the indicator function for whether or not the ith individual is captured during the
whole experiment, and

p∗
i = P

(
t∑
l=1

δil > 0

∣∣∣∣∣ Zi; β
)

= 1 − {1 −H(βTZ∗
i )}t ,

is the probability of being captured at least once for the ith individual. Denote the left hand side of
(5) by

∑ν
i=1 uνi(ρ). It can be shown that the mean of

∑ν
i=1 uνi(ρ) is zero. Combining Equations

(2), (3), (4), and (5), yields a set of estimating equations for θ = (ρ, ν):

u(θ) =


uα(θ)
uφ(θ)
uβ(θ)
uν(θ)

 =
ν∑
i=1


uαi(ρ)
uφi(ρ)
uβi(ρ)
uνi(ρ)

 =
ν∑
i=1

ui(ρ) = 0.

Let θ̂ = (ρ̂, ν̂) be the solution of u(θ) = 0. Since E{u(θ)} = 0 and u(θ) is a summation of i.i.d.
terms, it is believed, with some mild conditions on the distributions of Zi and εij , ν1/2(ρ̂ − ρ) and

ν−1/2(ν̂ − ν) are asymptotically normal with zero mean. The consistency for ν̂ is ν̂/ν
P→ 1, rather

than the common ν̂
P→ ν. With the normal assumptions for Zi and εij , the simulation results in

Section 3 suggest the asymptotic normality and consistency.
To solve the equations, we need to compute Ei{h(Zi)}: the conditional expectation of all

functions needed in solving the equations. The conditional density of Zi given the observed data

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2009 ESTIMATION IN CAPTURE–RECAPTURE MODELS 649

and the current parameter estimates is given by

f (Zi|D; ρ) = f (�i|Zi; β)f (Wi|Zi; φ) f (Zi; α)∫ +∞
−∞ f (�i|Zi; β)f (Wi|Zi; φ) f (Zi; α) dZi

.

So

Ei{h(Zi)} =
+∞∫

−∞
h(Zi)f (Zi|D; ρ) dZi.

An algorithm similar to the EM algorithm is outlined as follows. Let θ(k) = (ρ(k), ν(k)) denote the
value of the estimate of θ after the kth iteration.

Step 1: Assume a starting value θ(0).
Step 2: Use ρ(k) to estimate f (Zi|D; ρ(k)) and compute Ei{h(Zi)}.
Step 3: Solve u(θ(k+1)|θ(k)) = 0 for θ(k+1).
Step 4: Return to Step 2 unless θ(k) and θ(k+1) differ insignificantly.

The above algorithm is the same as the EM algorithm except that the population size ν
is updated by a Horvitz–Thompson type estimator in each iteration. The convergence of the
proposed algorithm is checked using a simulation study in Section 3.

The approximate variance–covariance matrix of θ̂ can be obtained by the sandwich method
(Diggle, Liang & Zeger, 1994): estimated by A(θ̂)−1B(θ̂)A(θ̂)−T where

B(θ̂) =
ν̂∑
i=1

{ui(ρ̂)ui(ρ̂)T} and A(θ̂) = −
(
∂u (θ)
∂θ

)
θ̂

.

A−T denotes the transpose of the inverse of the matrix A. For the calculation of the partial
derivatives, for those with respect to ν, it is noted that the individuals which have never been
captured during the whole experiment have the same ui(ρ) (denoted by u0(ρ)). Therefore,

u(θ) =
n∑
i=1

ui(ρ) + (ν − n)u0(ρ),

where n is the number of distinct captured individuals. The partial derivatives with respect to ν
are the vector u0(ρ), and the others can be obtained numerically. The variance of ν̂ can also be
estimated by an easily implemented method: calculating numerically the first derivative of the
conditional estimating equations with respect to ν and inverting it (see Herring & Ibrahim, 2001
for detailed discussion). Simulation studies show the two methods lead to very close results for
the variance estimate of ν̂, but the sandwich method gives the estimate of the variance–covariance
matrix of ρ̂. In the simulation studies and for the example given in Sections 3 and 4, we adopt the
sandwich method to estimate the variance of ν̂.

2.3. Some Extensions
When there is a behavioral response to capture, that is, pil = H(βTZ∗

i + γXil), where Xil is an
indicator function for whether or not the ith individual has been captured before the lth occasion,
the proposed inference procedure is still applicable. Since Xil is observable, we only need to
add a score function for γ . In the same way, the proposed inference procedure is applicable for

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



650 XI ET AL. Vol. 37, No. 4

the model Mht : pil = H(βTZ∗
i + ηTQl), where Ql is the covariate vector for the lth capture

occasion and is observable without measurement errors or missing data.
In the case when there are missing covariates only (with no measurement errors), the proposed

inference procedure is also applicable. The inference procedure is similar except that Equation
(3) is ignored, and Ei{h(Zi)} = h(Zi) for the captured individuals with recorded covariates Zi.
For those captured but without recorded covariates (i.e., missing) and those uncaptured during
the whole experiment, f (Zi|D; ρ) which is used for the calculation of Ei{h(Zi)} is as follows:

f (Zi|D; ρ) = f (�i|Zi; β)f (Zi; α)∫ +∞
−∞ f (�i|Zi; β)f (Zi; α) dZi

,

where ρ does not include φ.
If measurement errors are not additive elements to the covariates, for example, the observation

error for a gender, it is expected a similar method can be developed in the parametric framework.
Furthermore, when individual covariates vary from occasion to occasion, there is no estimator
available for ν. To deal with such a problem, some assumptions about variation of the covariates
would be needed; see Bonner & Schwarz (2006) and King, Brooks & Coulson (2008).

2.4. Estimating With Normal Assumptions
We choose the normal assumptions for illustration, that is, assume Zi ∼ Ns(µ,V) and εij ∼
Ns(0,	), where 	 is a diagonal matrix. So θ = (µ,V,	,β, ν) and

fz(Zi; µ,V) = |V|−1/2

(
√

2π)s
exp
{

−1
2

(Zi − µ)TV−1(Zi − µ)
}
,

fε(Wij−Zi; 	) = |	|−1/2

(
√

2π)s
exp
{

−1
2

(Wij − Zi)T	−1(Wij − Zi)
}
.

The estimating equations for (µ,V,	) are obtained as follows:

uµ(θ) =
ν∑
i=1

{Ei(Zi) − µ} = 0,

uv(θ) =
ν∑
i=1

{Ei(Zi − µ)(Zi−µ)T − V} = 0,

u	(θ) =
ν∑
i=1

mi∑
j=1

{Ei(Wij−Zi)(Wij−Zi)T − 	} = 0. (6)

From the above equations, there are closed-forms for updating (µ, V, 	) in each iteration step.
For updating β at each iteration step, a one-step Newton–Raphson algorithm (Wulfsohn & Tsiatis,
1997) can be applied, that is,

β(k+1)= β(k) − {Jβ(θ(k))}−1uβ(θ(k))

where Jβ(θ) is the derivative matrix of uβ(θ) with respect to β, having the following form:

Jβ(θ) = −t
ν∑
i=1

Ei

[
Z∗
i

{
∂H(βᵀZ∗

i )
∂β

}T
]
.
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In applying the sandwich method to estimate the variance–covariance of θ̂, the numerical
method is applied to calculate the partial derivatives (except those with respect to ν). The numerical
derivative of the xth estimating equation with respect to the yth parameter is obtained as follows:

(
∂ux(θ)
∂θy

)
θ̂

≈
ux(θ̂)|θ̂y+dy − ux(θ̂)|θ̂y−dy

2dy

where ux(θ̂)|θ̂y±dy is ux(θ) evaluated at θ̂ but the yth element θ̂y is replaced by θ̂y ± dy. Simulation
studies indicate that choosing dy = 0.01θ̂y is adequate for approximating the derivatives: the
errors in the resulting estimates are negligible.

3. SIMULATION STUDIES

A simulation study was done to assess the performance of the proposed estimator (with the normal
assumptions). We considered cases for which the number of covariates s = 1 and 2; ν = 200 and
400. Without loss of generality, letµ = 0 and all the variances of the covariates be 1. The procedure
for generating the data is as follows: for the ith individual with given (µ, V), Zi is generated first,
then with given β the capture history is generated. Let Pmeas be the probability of a measurement
being taken for each capture. Then with given Pmeas, for each capture, whether a measurement
is taken or not is decided; if a measurement is taken, the corresponding measurement errors are
generated with given 	. For convenience of comparison, for the different values of Pmeas and 	,
given (µ, V, β, ν), all the simulation results are based on the same data set including the capture
histories described as above, except the missing cases and measurement errors. For each given
(µ, V, β, ν), four different settings of (Pmeas, 	) are chosen (see Table 1).

In the simulations, for convenience of comparison, we only keep the repetitions for which the
proposed estimating procedure is successful (convergent) on all the four data sets with the same
capture histories but different missing cases and measurement errors due to the four different
values of (Pmeas, 	). This will not affect the true performances of the proposed estimator since
there are very few failures among the repetitions as long as the capture proportion is fairly large.
We generate the random data until 1,000 such repetitions are obtained. The proportion of failures
(denoted by pf ) for each setting is listed, pf = a/b: the denominator b is the total number of
repetitions among which there are 1,000 successful repetitions on the four settings of (Pmeas,
	), given (µ, V, β, ν); the numerator a is the number of failures for the corresponding setting
among the b repetitions. All simulation results are based on 1,000 such repetitions, av denotes the
average of the 1,000 values of ν̂; avse denotes the average of 1,000 values of ŝe(ν̂); SD denotes
the standard deviation of the 1,000 values of ν̂; CP denotes the coverage of the 95% confidence
intervals for ν (i.e., ν̂ ± 1.96 × ŝe(ν̂)); n̄miss denotes the average number of the individuals which
are captured during the whole experiment but with missing covariates; and PT denotes the aver-
age total capture proportion by the end of experiment. Some simulation results are presented in
Table 1, in which ν̂(prop) denotes the proposed estimator.

In the settings A and B of Table 1,
√
*/V is 0.5 and 1, this means the measurement errors are

large and very large; β1 is 0.5 and 1, which means the capture probability is sensitive and very
sensitive to the covariate (referring to the properties of the logistic function); for setting C, for
which s = 2, the superposition of the measurement errors means larger measurement errors on
the whole. Simulation studies show the proposed estimator ν̂(prop) is slightly positively biased,
especially for large measurement errors along with a sensitive capture probability. Asν increases or
the total capture proportion increases, (ν̂(prop) − ν)/ν decreases and becomes very small. Further,
SD(ν̂) and avse(ν̂) are quite close, indicating that the sandwich method for the variance estimate
is satisfactory. When the measurement errors are large and the capture probability is sensitive to
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Table 1: Simulation results for the proposed estimating procedure based on 1,000 successful repetitions.

µ = 0, V = 1, β = (−1.0, 0.5)T, t = 5

(A) s = 1, ν = 200

(PT = 77.2%) Pmeas = 1.0 (n̄miss = 0) Pmeas = 0.9 (n̄miss=7.4)

av SD avse CP pf av SD avse CP pf

* = 0.52 ν̂(prop) 202 14 14 95 0
1,001 202 14 14 95 0

1,001

ν̂(CL) 198 13 12 91 184 12 11 60

ν̂(CLm) 199 13 13 93 195 12 12 87

* = 1.02 ν̂(prop) 203 15 15 95 0
1,001 203 16 15 95 1

1,001

ν̂(CL) 193 11 11 82 180 11 9 43

ν̂(CLm) 195 12 11 86 191 11 11 79

µ = 0, V = 1, β = (−0.5, 1.0)T, t = 5

(B) s = 1, ν = 200

(PT = 83.1%) Pmeas = 1.0 (n̄miss = 0) Pmeas = 0.9 (n̄miss = 5.4)

av SD avse CP pf av SD avse CP pf

* = 0.52 ν̂(prop) 203 15 15 92 3
1,005 203 16 14 93 2

1,005

ν̂(CL) 193 11 9 75 183 10 8 44

ν̂(CLm) 198 13 11 87 194 11 10 79

* = 1.02 ν̂(prop) 203 16 15 93 2
1,005 203 16 15 93 1

1,005

ν̂(CL) 184 8 6 30 176 8 6 8

ν̂(CLm) 190 10 9 65 186 9 8 51

µ =
(

0

0

)
, V =

(
1 0.2

0.2 1

)
, β = (−1.0, 0.5, 1.0)T, t = 6

(C) s = 2, ν = 400

(PT = 75.9%) Pmeas = 1.0 (n̄miss = 0) Pmeas = 0.8 (n̄miss = 22.8)

av SD avse CP pf av SD avse CP pf

	 = D(0.2) ν̂(prop) 403 28 27 94 6
1,009 403 28 27 93 5

1,009

	 = D(0.5) ν̂(prop) 403 29 28 94 6
1,009 404 29 28 94 7

1,009

D(σ) = diag(σ2, σ2).
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the corresponding covariates, the coverages of the 95% confidence intervals are a little smaller
than 95%. Using the 95% confidence interval proposed by Chao (1987) which is calculated using
a log transformation, the coverage increases by 0.5–1.5%. For a fairly large capture proportion,
there are very few failures for the proposed algorithm. As measurement errors become large or
the number of missing covariates increases, the performance of the proposed estimator ν̂(prop)

does not change much. It might be that ν̂(prop) makes full use of the normal assumptions and
the replicates. In the case of no missing covariates, the estimator proposed by Hwang & Huang
(2003), denoted by ν̂(HH) was applied. This estimator is obtained by assuming the variances of the
measurement errors are known and using only the first covariate observations. Simulation results
(not reported) show, for moderately large measurement errors, ν̂(HH) is better than ν̂(prop) in terms
of RMSE; but for large measurement errors, ν̂(prop) is better.

For the settings without missing covariates (i.e., Pmeas = 1.0) in Table 1, the conditional
likelihood with the Horvitz–Thompson estimator, denoted by ν̂(CL) was applied. This estimator
is obtained by regarding the first observations as the exact values of the covariates. It is found
for * = 1.02, ν̂(CL) is seriously negatively biased, especially for β1 = 1.0 (in the setting B); for
* = 0.52, the biases are not so serious, especially for β1 = 0.5 (in the setting A). Our simulation
studies show, when measurement errors are large and the capture probability is sensitive to the
corresponding covariate, then ν̂(CL) is substantially negatively biased. With missing covariates,
by excluding the captured individuals with missing covariates, the negative bias becomes greater.
Further, we compute the modified estimate of ν̂(CL), denoted by ν̂(CLm). This estimate is obtained
using the average of observations,

∑
j Wij , as the exact covariate value for the ith individual;

the resulting estimate is adjusted by multiplying by (1 − nmiss/n)−1, where n is the number of
distinct captured individuals, nmiss is the number of the distinct captured individuals with missing
covariate. Simulation studies show that ν̂(CLm) is a big improvement on ν̂(CL). In the case that
measurement error is not large and there are very few missing covariates, the performance of
ν̂(CLm) is quite good.

We consider two special cases with the proposed estimator.

(i) Missing covariates only, no covariate measurement errors. For this case, measurement only
needs to be taken once for each captured individual. The proposed estimating procedure for
this case is described in Section 2.3. For the ith individual, the probability of no observed
covariate values is (1 − Pmeas)*lδil . For comparison in the simulation study, we apply the
conditional likelihood with the Horvitz–Thompson estimator ν̂(CL) which excludes the indi-
viduals captured but with missing covariates. Also, we compute the modified estimate ν̂(CLm)

(with the adjusted factor (1 − nmiss/n)−1, but without the use of the average of observations).
Some simulation results are presented in Table 2. The proportion of failures pf = a/b: the
denominator b is the total number of repetitions among which there are 1,000 repetitions for
which both ν̂(prop) and ν̂(CL) are successful; the numerator a is the number of failures for
the corresponding estimator among the b repetitions. The simulation results are based on the
1,000 successful repetitions.

There is a little positive bias for ν̂(prop), but as the total capture proportion increases, the
bias will diminish. In whole, ν̂(prop) performs well. ν̂(CL) seriously underestimates ν, and the
95% confidence interval has very poor coverage. ν̂(CLm) considerably improves on the results
of ν̂(CL) but still worse than ν̂(prop).

(ii) mi = 1 for all captured individuals. In this case, for each captured individual there is only
one observation for the covariates without replicates and none is missing. For such a data
set, the proposed algorithm does not converge. When the covariates are observed only once
for each captured individual, it is impossible to estimate V and 	 separately; there is an
overparameterization problem. For this case, we must assume 	 is known. This is the model

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



654 XI ET AL. Vol. 37, No. 4

Table 2: Simulation results for comparison of the proposed estimator ν̂(prop) with ν̂(CL) and ν̂(CLm) when
there are missing covariates only s = 1, Zi ∼ N(0, 1), β = (−1.5, 0.5)T.

ν = 1, 000 ν = 200

Pmeas = 0.7 av SD avse CP pf av SD avse CP pf

t = 4 ν̂(prop) 1,012 71 68 95 0
1,000 207 34 34 94 12

1,012

(PT = 55.7%) ν̂(CL) 689 47 42 0 0
1,000 141 22 20 22 0

1,012

(p̄miss = 12.7%) ν̂(CLm) 893 56 55 45 182 27 26 77

t = 8 ν̂(prop) 1,003 28 28 95 0
1,000 202 13 13 95 0

1,000

(PT = 78.0%) ν̂(CL) 796 24 19 0 0
1,000 160 10 9 6 0

1,000

(p̄miss = 12.3%) ν̂(CLm) 945 23 23 34 190 11 11 78

t = 12 ν̂(prop) 1,001 16 16 96 0
1,000 201 7 7 94 0

1,000

(PT = 88.2%) ν̂(CL) 865 16 12 0 0
1,000 173 8 6 5 0

1,000

(p̄miss = 9.7%) ν̂(CLm) 972 14 14 44 195 7 6 80

Pmeas = 0.8 av SD avse CP pf av SD avse CP pf

t = 4 ν̂(prop) 1,012 70 67 94 0
1,000 207 32 33 94 14

1,014

(PT = 55.7%) ν̂(CL) 792 53 49 6 0
1,000 161 24 23 48 0

1,014

(p̄miss = 8.1%) ν̂(CLm) 927 59 57 67 189 28 27 84

t = 8 ν̂(prop) 1,003 27 28 95 0
1,000 202 13 13 95 0

1,000

(PT = 78.0%) ν̂(CL) 869 24 22 0 0
1,000 175 11 10 32 0

1,000

(p̄miss = 7.6%) ν̂(CLm) 962 24 24 63 194 11 11 86

t = 12 ν̂(prop) 1,001 16 16 96 0
1,000 201 7 7 94 0

1,000

(PT = 88.2%) ν̂(CL) 918 16 14 0 0
1,000 184 7 6 30 0

1,000

(p̄miss = 5.8%) ν̂(CLm) 981 14 14 70 197 7 7 87

Pmeas = 0.9 av SD avse CP pf av SD avse CP pf

t = 4 ν̂(prop) 1,011 70 66 95 0
1,000 206 32 33 94 15

1,015

(PT = 55.7%) ν̂(CL) 898 60 59 51 0
1,000 183 28 27 78 0

1,015

(p̄miss = 3.9%) ν̂(CLm) 966 64 61 86 197 29 29 90

t = 8 ν̂(prop) 1,003 27 27 95 0
1,000 202 13 13 95 0

1,000

(PT = 78.0%) ν̂(CL) 938 25 24 30 0
1,000 189 12 11 75 0

1,000

(p̄miss = 3.5%) ν̂(CLm) 982 26 26 86 198 12 12 92

t = 12 ν̂(prop) 1,001 16 16 96 0
1,000 201 7 7 94 0

1,000

(PT = 88.2%) ν̂(CL) 962 16 15 30 0
1,000 193 7 7 74 0

1,000

(p̄miss = 2.6%) ν̂(CLm) 991 15 15 90 199 7 7 93

p̄miss = n̄miss/ν.
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considered by Hwang & Huang (2003). In this case we apply the proposed algorithm but
ignoring (6) since 	 is known. Simulation studies show that the performance is very close to
the case when we allow for replicates but without knowing the variances of the measurement
errors. With large measurement errors, the performance of the proposed estimator is better
than that of Hwang & Huang (2003), since the proposed estimator makes full use of the
normal assumptions. Also, if missing covariates occur in this case, that is, somemi = 0, with
the assumption of the known variances of the measurement errors, the proposed inference
procedure is still applicable.

For capture–recapture models with heterogeneity in capture probability, Link (2003) shows
that different assumptions for the distribution of the capture probability may lead to vastly
different estimates of the population size. For the proposed model with the normal assump-
tion, if the true distributions of the covariates are not normal, a simulation study is conducted
to check the sensitivity of the estimate of the population size. For each of the settings in
Tables 1 and 2 (except the setting C in Table 1), instead of the normal distributions, the ran-
dom data for the covariates are generated with Gamma distributions having the same variances
as the normal distributions. The covariates are obtained by subtracting the means of Gamma
distributions from the generated data. Therefore, the obtained covariates have the same means
and variances as the normal distributions, but with gamma shapes. The shape parameter is cho-
sen as 1.5, 2, 3, and 6, respectively. Based on 1,000 repetitions for each of the shape parameters
in each of the settings, the simulation results show that the estimates of population sizes are
quite close to the corresponding results in Tables 1 and 2. Generally speaking,CP varies from
88% to 94%, a little smaller than the corresponding values in Tables 1 and 2. The RMSEs are
almost the same or even a little better/smaller than the corresponding values in Tables 1 and 2.
Besides the Gamma distributions, the covariates are also generated with truncated normal dis-
tributions, including left truncated, right truncated, and two-sided truncated. The probability
of the truncated part is selected from 0.05 to 0.15. The simulation results show similar results:
CP is a little worse but RMSE is almost the same or even a little better, when compared with
the corresponding values in Tables 1 and 2. This simulation study suggests that the estimate
of population size for the proposed model with the normal assumption is reasonably robust.

4. MAI PO EXAMPLE

We re-examined the capture–recapture data studied by Hwang & Huang (2003) on bird species
P. flaviventris in Hong Kong Mai Po Bird Sanctuary. The bird’s wing length is shown to be an
important covariate associated with capture probability but it is subject to measurement error.
Ignoring the measurement error leads to a serious underestimation (see Hwang & Huang, 2003).
In this data set, there are 165 birds caught in 207 captures on 17 trapping occasions. For each
capture (including recapture), the wing length of the captured bird was measured, but not always.
It is found that mi < ni for three of the 165 captured birds, that is, the number of measuring
times is less than the number of capture times. For one of the captured birds, mi = 0, that is,
the measurement of the wing length is missing. For the estimator proposed by Hwang & Huang
(2003), the captured bird with no record of wing length has to be excluded, the variance of the
measurement error is assumed known and the first observation of wing length for each captured
individuals is used.

We apply the proposed estimator which incorporates the replicates and allows for missing
covariates. The capture probability is modelled with a logistic function H(β0 + β1Zi), where
Zi is the exact wing length of the ith individual and is a realization of a normal distribution
N(µ,V ). The observed wing length is the true wing length plus a measurement error εij , where
εij ∼ N(0, σ2) and σ2 is unknown. We list the results in Table 3 where ν̂(HH) and ν̂(CL) are
applied to the data in which the captured bird with missing covariate is excluded. For ν̂(HH), σ2
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Table 3: Summary results of the proposed estimator and the others for the P. flaviventris data in Hong
Kong Mai Po.

Estimator ν̂ β̂0 β̂1 µ̂ V̂ σ̂2

ν̂(prop) 542 (104.9) −26.0 (5.15) 0.493 (0.112) 44.7 (0.173) 1.32 (0.206) 0.325 (0.083)

513 ( 94.8) −21.9 (5.52) 0.403 (0.120) Giving σ2 = 0.0625 (i.e., 0.252)

ν̂(HH) 529 (106.7) −24.5 (6.40) 0.461 (0.139) Giving σ2 = 0.2500 (i.e., 0.502)

570 (141.1) −31.2 (8.69) 0.608 (0.189) Giving σ2 = 0.5625 (i.e., 0.752)

ν̂(CL) 512 (95.3) −21.1 (5.28) 0.386 (0.115)

ν̂(CLm) 524 (100.6)

ν̂(prop)a 539 (104.8) −26.1 (5.30) 0.497 (0.116) 44.7 (0.172) 1.26 (0.207) 0.320 (0.085)

ν̂(CL)a 497 (92.1)

ν̂(CLm)a 526 (101.8)

aEstimator is applied to an artificial data in which four more captured birds are assumed with missing records
of wing length.

is given and uses only the first observation of wing length for each captured bird. For ν̂(CL), the
first observation of wing length is regarded as the exact length. For ν̂(CLm), the average of the
observations of wing length is regarded as the exact length, the resulting estimate is adjusted by
multiplying (1 − nmiss/n)−1.

For ν̂(HH), the different given values of σ2 lead to quite different estimates for ν. The proposed
estimator ν̂(prop) which uses the replicates and allows for missing covariates gives ν̂ = 542(104.9),
where the number in brackets is the standard error, (the Fortran code with an explanation file can
be obtained from the first author). Since σ̂2 = 0.325(0.083) and V̂ = 1.322(0.206), the measure-
ment errors are large; β̂1 = 0.493(0.112), this means the capture probability is sensitive to the
wing length. Therefore, applying ν̂(CL) to the data will seriously underestimate ν. Using ν̂(CLm)

significantly improves the estimate. Yip, Lin & Xi (2005) used this data set to illustrate the
continuous-time model by treating the data as continuous-time data, the result is ν̂ = 578(153.4),
quite different with that of ν̂(prop).

In addition, we randomly select four other individuals among the 164 captured individuals
with no missing covariates, and assume the corresponding records of wing length are missing.
Applying the proposed estimator to these artificial data sets that each have a total of five captured
individuals with missing covariates, we found that the estimate of ν changes little or is almost
unchanged, a typical result is presented in Table 3. Applying ν̂(CL) by excluding the five individuals
yields a much smaller estimate for ν, ν̂(CLm) gives a significantly improved estimate.

5. DISCUSSION

When there are large measurement errors on a covariate to which the capture probability
is sensitive or there are a large number of captured individuals with missing covari-
ates, the conditional likelihood with the Horvitz–Thompson estimator leads to an estimate
which is seriously negatively biased. The method proposed here provides an improved
tool for such situations, provided appropriate distributions can be found for the covari-
ates and measurement errors. For capture–recapture experiments, since only part of the
population of interest can be observed, it is not easy to identify these distributions, (if only
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observed data are used). Link (2003) shows that different assumptions regarding capture proba-
bility distribution can fit equally well with observed capture frequency data, while the different
assumptions may lead to vastly different estimates of the population size. Therefore, the identifi-
cation of the distributions of the covariates in the proposed model is an important issue. To better
identify the covariate distributions, besides the observed data, it is necessary to incorporate some
other information, for example, historical observation (if possible). Because of the shortcomings
of the proposed parametric model, it is worthwhile to develop a semi-parametric or nonparamet-
ric method for the case with replicates of mismeasured covariates and possibly missing covariate
data.

For the proposed model with the normal assumption, the simulation study suggests that the
estimate of population size is reasonably robust. This suggestion is different from that of Link
(2003). In Link (2003), the population sizes are estimated with the number of distinct captured
individual divided by the overall probability of being captured at least once that directly depends
on the distribution of capture probability. The proposed estimate is based on the Horvitz–Thomson
type estimate which might be more appropriate for heterogeneous populations when the capture
probabilities are mainly decided by some individual’s covariates.

If some major covariates affecting the capture probability are not included in the model, the
final results may be quite unreliable. With the proposed model, it is likely that a much more
homogeneous population would be suggested and the population size would be underestimated.
We should be very careful to investigate which covariates really affect the capture probability and
how they affect it.
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